Skip to Content
Merck
  • Coat Protein-Dependent Behavior of Poly(ethylene glycol) Tails in Iron Oxide Core Virus-like Nanoparticles.

Coat Protein-Dependent Behavior of Poly(ethylene glycol) Tails in Iron Oxide Core Virus-like Nanoparticles.

ACS applied materials & interfaces (2015-05-20)
Andrey G Malyutin, Hu Cheng, Olivia R Sanchez-Felix, Kenneth Carlson, Barry D Stein, Petr V Konarev, Dmitri I Svergun, Bogdan Dragnea, Lyudmila M Bronstein
ABSTRACT

Here we explore the formation of virus-like nanoparticles (VNPs) utilizing 22-24 nm iron oxide nanoparticles (NPs) as cores and proteins derived from viral capsids of brome mosaic virus (BMV) or hepatitis B virus (HBV) as shells. To accomplish that, hydrophobic FeO/Fe3O4 NPs prepared by thermal decomposition of iron oleate were coated with poly(maleic acid-alt-octadecene) modified with poly(ethylene glycol) (PEG) tails of different lengths and grafting densities. MRI studies show high r2/r1 relaxivity ratios of these NPs that are practically independent of the polymer coating type. The versatility and flexibility of the viral capsid protein are on display as they readily form shells that exceed their native size. The location of the long PEG tails upon shell formation was investigated by electron microscopy and small-angle X-ray scattering. PEG tails were located differently in the BMV and HBV VNPs, with the BMV VNPs preferentially entrapping the tails in the interior and the HBV VNPs allowing the tails to extend through the capsid, which highlights the differences between intersubunit interactions in these two icosahedral viruses. The robustness of the assembly reaction and the protruding PEG tails, potentially useful in modulating the immune response, make the systems introduced here a promising platform for biomedical applications.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ethylene glycol, BioUltra, ≥99.5% (GC)
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Ethylene glycol, anhydrous, 99.8%
Sigma-Aldrich
Potassium chloride solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Potassium chloride, BioXtra, ≥99.0%
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Potassium chloride, for molecular biology, ≥99.0%
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium acetate, BioXtra, ≥99.0%
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Sodium acetate, anhydrous, for molecular biology, ≥99%
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium acetate, powder, BioReagent, suitable for electrophoresis, suitable for cell culture, suitable for insect cell culture, ≥99%
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Chloroform, ≥99%, PCR Reagent, contains amylenes as stabilizer
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
Sodium acetate, meets USP testing specifications, anhydrous
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Citrate Concentrated Solution, BioReagent, suitable for coagulation assays, 4 % (w/v)
Sigma-Aldrich
Potassium chloride, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99.0%
Sigma-Aldrich
Potassium chloride solution, 0.075 M, sterile-filtered, BioXtra, suitable for cell culture
Sigma-Aldrich
Potassium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Sodium acetate solution, BioUltra, for molecular biology, ~3 M in H2O
Sigma-Aldrich
Sodium acetate, anhydrous, BioUltra, for luminescence, for molecular biology, ≥99.0% (NT)
Sigma-Aldrich
Potassium chloride, ≥99.99% trace metals basis