- Transforming Waste Poly(Ethylene Terephthalate) into Nitrogen Doped Carbon Nanotubes and Its Utility in Oxygen Reduction Reaction and Bisphenol-A Removal from Contaminated Water.
Transforming Waste Poly(Ethylene Terephthalate) into Nitrogen Doped Carbon Nanotubes and Its Utility in Oxygen Reduction Reaction and Bisphenol-A Removal from Contaminated Water.
Till date, waste plastics are either down-cycled to cheap products like fibers or burnt in incinerators to generate heat. In this manuscript, we report a simple and effective technique for microwave induced transformation of waste polyethylene terephthalate (wPET) to carbon nano-tubes (CNT). Iron nano-particles dispersed on graphene substrate acted as catalyst for CNT growth whereas urea served the dual role of de-polymerisation of wPET and also as nitrogen doping agent. Application of our newly synthesized 3-D meso-porous graphene-nitrogen doped carbon nanotube- iron electrode (Fe@NCNT-rGO) as electro-catalyst for oxygen reduction reaction (ORR) shows a positive half-wave potential (E1/2) of 0.75 V vs. RHE (reversible hydrogen electrode), nearly ideal four-electron pathway and excellent methanol tolerance when compared to commercial 20% Pt/C. The utility of Fe@NCNT-rGO for removal of bisphenol A from contaminated waters is also reported.