Skip to Content
Merck
  • Enhanced cell-cell contact stability and decreased N-cadherin-mediated migration upon fibroblast growth factor receptor-N-cadherin cross talk.

Enhanced cell-cell contact stability and decreased N-cadherin-mediated migration upon fibroblast growth factor receptor-N-cadherin cross talk.

Oncogene (2019-07-18)
Thao Nguyen, Laurence Duchesne, Gautham Hari Narayana Sankara Narayana, Nicole Boggetto, David D Fernig, Chandrashekhar Uttamrao Murade, Benoit Ladoux, René-Marc Mège
ABSTRACT

N-cadherin adhesion has been reported to enhance cancer and neuronal cell migration either by mediating actomyosin-based force transduction or initiating fibroblast growth factor receptor (FGFR)-dependent biochemical signalling. Here we show that FGFR1 reduces N-cadherin-mediated cell migration. Both proteins are co-stabilised at cell-cell contacts through direct interaction. As a consequence, cell adhesion is strengthened, limiting the migration of cells on N-cadherin. Both the inhibition of migration and the stabilisation of cell adhesions require the FGFR activity stimulated by N-cadherin engagement. FGFR1 stabilises N-cadherin at the cell membrane through a pathway involving Src and p120. Moreover, FGFR1 stimulates the anchoring of N-cadherin to actin. We found that the migratory behaviour of cells depends on an optimum balance between FGFR-regulated N-cadherin adhesion and actin dynamics. Based on these findings we propose a positive feed-back loop between N-cadherin and FGFR at adhesion sites limiting N-cadherin-based single-cell migration.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hydroxy-Dynasore, ≥98% (HPLC)
Sigma-Aldrich
PP2, ≥98% (HPLC)