Skip to Content
Merck
All Photos(1)

Documents

20287

Supelco

Carbotrap® Adsorbent

matrix Carbotrap® B, 20-40 mesh, bottle of 10 g

Sign Into View Organizational & Contract Pricing


About This Item

EC Number:
UNSPSC Code:
23201100

product line

Carbotrap®

form

granular

packaging

bottle of 10 g

technique(s)

LPLC: suitable

surface area

~100 m2/g

matrix

Carbotrap® B

matrix active group

carbon

particle size

20-40 mesh

pore size

0 Å pore diameter
~0 cm3/g macroporosity
~0 cm3/g mesoporosity
~0 cm3/g microporosity

density

~0.38 g/mL (free fall density)

separation technique

reversed phase

General description

A graphitized carbon black (GCB) can be non-porous or porous. The graphitization process results in a highly pure surface with great adsorption and desorption (if required) properties. Surface interactions depend solely on dispersion (London) forces. These particles are:
  • Granular
  • Friable
  • Used for molecules with an analyte size relative to C3-C20+ n-alkanes
  • Hydrophobic (can be used in high humidity environments)

Generally, GCB adsorbents offer weaker relative adsorptive strength compared to carbon molecular sieve (CMS) adsorbents, and similar relative adsorptive strength compared to spherical graphitized polymer carbon (SGPC) adsorbents. Our Carbotrap products are a type of GCB adsorbent.
  • Particles are 20/40 mesh
  • These large particles allow high flow rates without excessive pressure drops

For more information about any of our specialty carbon adsorbents, please visit sigma-aldrich.com/carbon

Legal Information

Carbotrap is a registered trademark of Merck KGaA, Darmstadt, Germany

Storage Class Code

11 - Combustible Solids

WGK

nwg

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Plant Volatile Analysis.
Linskens HF and Jackson JF.
Modern Methods of Plant Analysis, 19, 54-56 (1997)
Florian Gahleitner et al.
Bioanalysis, 5(18), 2239-2247 (2013-09-24)
In-community non-invasive identification of asthma-specific volatile organic compounds (VOCs) in exhaled breath presents opportunities to characterize phenotypes, and monitor disease state and therapies. The feasibility of breath sampling with children and the preliminary identification of childhood asthma markers were studied.
Yifei Sun et al.
Journal of environmental sciences (China), 25(1), 213-219 (2013-04-17)
A group parameter approach using "total organic halogen" is effective for monitoring gaseous organic halogen compounds, including fluorine, chlorine, and bromine compounds, generated from combustion. We described the use of barrier-discharge radiofrequency-helium-plasma/atomic emission spectrometry, for the detection of semi- and
S Ghittori et al.
Journal of toxicology and environmental health, 38(3), 233-243 (1993-03-01)
Benzene concentrations in urine samples (Cu, ng/L) from 110 workers exposed to benzene in chemical plants and gasoline pumps were determined by injecting urine supernate into a gas chromatograph. The urine was saturated with anhydrous N2SO4 to facilitate the passage
W A McClenny et al.
Journal of chromatography. A, 813(1), 101-111 (1998-08-11)
An evaluation of performance criteria for US Environmental Protection Agency Compendium Method TO-17 for monitoring volatile organic compounds (VOCs) in air has been accomplished. The method is a solid adsorbent-based sampling and analytical procedure including performance criteria for four merit

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service