Skip to Content
Merck
  • Enhanced regeneration of corneal tissue via a bioengineered collagen construct implanted by a nondisruptive surgical technique.

Enhanced regeneration of corneal tissue via a bioengineered collagen construct implanted by a nondisruptive surgical technique.

Tissue engineering. Part A (2014-11-21)
Marina Koulikovska, Mehrdad Rafat, Goran Petrovski, Zoltán Veréb, Saeed Akhtar, Per Fagerholm, Neil Lagali
ABSTRACT

Severe shortage of donor corneas for transplantation, particularly in developing countries, has prompted the advancement of bioengineered tissue alternatives. Bioengineered corneas that can withstand transplantation while maintaining transparency and compatibility with host cells, and that are additionally amenable to standardized low-cost mass production are sought. In this study, a bioengineered porcine construct (BPC) was developed to function as a biodegradable scaffold to promote corneal stromal regeneration by host cells. Using high-purity medical-grade type I collagen, high 18% collagen content and optimized EDC-NHS cross-linker ratio, BPCs were fabricated into hydrogel corneal implants with over 90% transparency and four-fold increase in strength and stiffness compared with previous versions. Remarkably, optical transparency was achieved despite the absence of collagen fibril organization at the nanoscale. In vitro testing indicated that BPC supported confluent human epithelial and stromal-derived mesenchymal stem cell populations. With a novel femtosecond laser-assisted corneal surgical model in rabbits, cell-free BPCs were implanted in vivo in the corneal stroma of 10 rabbits over an 8-week period. In vivo, transparency of implanted corneas was maintained throughout the postoperative period, while healing occurred rapidly without inflammation and without the use of postoperative steroids. BPC implants had a 100% retention rate at 8 weeks, when host stromal cells began to migrate into implants. Direct histochemical evidence of stromal tissue regeneration was observed by means of migrated host cells producing new collagen from within the implants. This study indicates that a cost-effective BPC extracellular matrix equivalent can incorporate cells passively to initiate regenerative healing of the corneal stroma, and is compatible with human stem or organ-specific cells for future therapeutic applications as a stromal replacement for treating blinding disorders of the cornea.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
L-Glutamine, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
L-Glutamine, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
L-Glutamine
Sigma-Aldrich
Propidium iodide, ≥94.0% (HPLC)
Sigma-Aldrich
Propidium iodide, ≥94% (HPLC)
Sigma-Aldrich
L-Glutamine, BioUltra, ≥99.5% (NT)
SAFC
L-Glutamine
Supelco
L-Glutamine, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Sigma-Aldrich
L-Glutamine
Supelco
L-Glutamine, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide, ≥97.0% (T)
Sigma-Aldrich
Propidium iodide solution
Sigma-Aldrich
N-Hydroxysuccinimide, purum, ≥97.0% (T)
Supelco
Residual Solvent - Chloroform, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
β-D-Allose, rare aldohexose sugar
Sigma-Aldrich
N-Hydroxysuccinimide, 98%
Sigma-Aldrich
Glutaraldehyde solution, technical, ~50% in H2O (5.6 M)
Corning® Costar® TC-Treated Multiple Well Plates, size 24 wells, flat bottom wells, case of 100 (20 Bulk Packs of 5), sterile, lid
Tetracaine hydrochloride, European Pharmacopoeia (EP) Reference Standard
USP
Acetone, United States Pharmacopeia (USP) Reference Standard
USP
Tetracaine hydrochloride, United States Pharmacopeia (USP) Reference Standard
Supelco
Acetone, Pharmaceutical Secondary Standard; Certified Reference Material