Skip to Content
Merck
  • Hemodynamic effects of a poly(ethylene oxide) drag-reducing polymer, Polyox WSR N-60K, in the open-chest rat.

Hemodynamic effects of a poly(ethylene oxide) drag-reducing polymer, Polyox WSR N-60K, in the open-chest rat.

Journal of cardiovascular pharmacology (1989-09-01)
P I Polimeni, B T Ottenbreit
ABSTRACT

The acute hemodynamic effects of an intravenously (i.v.) injected poly(ethylene oxide), Polyox WSR N-60K (dose 50 mg/kg), were studied in the open-chest rat anesthetized with sodium pentobarbital. The injectate is one of four drag-reducing polymers known to augment in vitro blood flow under a constant pressure gradient; the others are an anionic polyacrylamide (Separan), a rhamnogalactogalacturonan (RGGu), and a deoxyribonucleic acid (calf thymus DNA). RGGu and Separan both augment cardiac output in the rat. Aortic blood flow, measured with an electromagnetic flow probe mounted on the ascending aorta, increased immediately after administration of the polymer and remained above control flow for at least 1 h. A small sustained decrease in heart rate (HR) was associated with a prolongation of systole. Ventricular and arterial blood pressures increased progressively over the 2-h postinjection period. Total peripheral resistance (TPR) initially decreased but then increased continuously throughout the experimental period, eventually surpassing the control value. Although the in vivo effects of Polyox differ from those of RGGu and Separan, the effects of the three macromolecules on aortic flow and TPR are similar at least in the first hour. Because the three substances are chemically dissimilar, these results further support the hypothesis that the primary mechanism responsible for the hemodynamic changes caused by some drag-reducing polymers--apparently limited to those with molecular lengths approaching 100 microns--is physical in nature.

MATERIALS
Product Number
Brand
Product Description

Supelco
Polyethylene glycol/Polyethylene oxide ReadyCal Set Mp ~250 -1′100 000, analytical standard
Sigma-Aldrich
Kollisolv® PEG E 400
Sigma-Aldrich
Kollisolv® PEG E 300
Sigma-Aldrich
Poly(ethylene glycol), average mol wt 8,000, powder
Sigma-Aldrich
Poly(ethylene glycol), average mol wt 200
Sigma-Aldrich
Poly(ethylene glycol), average mol wt 10,000
Sigma-Aldrich
Poly(ethylene glycol), average Mn 950-1,050
Sigma-Aldrich
Poly(ethylene glycol), average mol wt 1,450
Sigma-Aldrich
Poly(ethylene glycol), for molecular biology, average mol wt 8,000
Sigma-Aldrich
Polyethylene glycol solution, Hybri-Max, 50 % (w/v), average mol wt 1,450, 0.2 μm filtered, BioReagent, suitable for hybridoma
Sigma-Aldrich
Polyethylene glycol solution, 40 % (w/w) in H2O, average mol wt 8,000
Sigma-Aldrich
Polyethylene glycol/ dimethyl sulfoxide solution, Hybri-Max, average mol wt 1,450, 50 % (w/v), 0.2 μm filtered, BioReagent, suitable for hybridoma
Sigma-Aldrich
Poly(ethylene glycol), average mol wt 400
Sigma-Aldrich
Poly(ethylene glycol), BioUltra, 600
Sigma-Aldrich
Poly(ethylene glycol), BioUltra, 1,500
Sigma-Aldrich
Poly(ethylene glycol), BioUltra, for molecular biology, 1,000
Sigma-Aldrich
Poly(ethylene glycol), BioUltra, 35,000
Sigma-Aldrich
Poly(ethylene glycol), BioUltra, 400
Sigma-Aldrich
Poly(ethylene glycol), 35,000
Sigma-Aldrich
Poly(ethylene glycol), BioUltra, 1,000
Sigma-Aldrich
Poly(ethylene glycol), BioUltra, 2,000
Sigma-Aldrich
Poly(ethylene glycol), tested according to Ph. Eur., 6,000
Sigma-Aldrich
Poly(ethylene glycol), average Mw 1,500
Sigma-Aldrich
Poly(ethylene glycol), BioUltra, 300
Sigma-Aldrich
Poly(ethylene glycol), BioUltra, 3,350
Sigma-Aldrich
Poly(ethylene oxide), average Mv ~1,000,000 (nominal), powder
Sigma-Aldrich
Poly(ethylene oxide), average Mv 600,000 (nominal), powder
Sigma-Aldrich
Poly(ethylene oxide), average Mv 400,000 (nominal), powder
Sigma-Aldrich
Poly(ethylene oxide), average Mv ~2,000,000 (nominal), powder
Sigma-Aldrich
Poly(ethylene oxide), average Mv ~8,000,000 (nominal), powder