Skip to Content
Merck
  • Proteomic analysis reveals co-ordinated alterations in protein synthesis and degradation pathways in LRRK2 knockout mice.

Proteomic analysis reveals co-ordinated alterations in protein synthesis and degradation pathways in LRRK2 knockout mice.

Human molecular genetics (2018-06-20)
Laura Pellegrini, David N Hauser, Yan Li, Adamantios Mamais, Alexandra Beilina, Ravindran Kumaran, Andrea Wetzel, Jonathon Nixon-Abell, George Heaton, Iakov Rudenko, Mor Alkaslasi, Natalie Ivanina, Heather L Melrose, Mark R Cookson, Kirsten Harvey
ABSTRACT

Mutations in leucine-rich repeat kinase 2 (LRRK2) segregate with familial Parkinson's disease (PD) and genetic variation around LRRK2 contributes to risk of sporadic disease. Although knockout (KO) of Lrrk2 or knock-in of pathogenic mutations into the mouse germline does not result in a PD phenotype, several defects have been reported in the kidneys of Lrrk2 KO mice. To understand LRRK2 function in vivo, we used an unbiased approach to determine which protein pathways are affected in LRRK2 KO kidneys. We nominated changes in cytoskeletal-associated proteins, lysosomal proteases, proteins involved in vesicular trafficking and in control of protein translation. Changes were not seen in mice expressing the pathogenic G2019S LRRK2 mutation. Using cultured epithelial kidney cells, we replicated the accumulation of lysosomal proteases and demonstrated changes in subcellular distribution of the cation-independent mannose-6-phosphate receptor. These results show that loss of LRRK2 leads to co-ordinated responses in protein translation and trafficking and argue against a dominant negative role for the G2019S mutation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Cathepsin D Rabbit pAb, liquid, Calbiochem®
Sigma-Aldrich
Monoclonal Anti-β-Actin antibody produced in mouse, clone AC-74, ascites fluid
Sigma-Aldrich
Anti-Acetylated Tubulin antibody, Mouse monoclonal, clone 6-11B-1, purified from hybridoma cell culture