Skip to Content
Merck
All Photos(1)

Documents

349151

Sigma-Aldrich

Copper

foil, thickness 0.5 mm, 99.98% trace metals basis

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
Cu
CAS Number:
Molecular Weight:
63.55
EC Number:
MDL number:
UNSPSC Code:
11101604
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

99.98% trace metals basis

form

foil

resistivity

1.673 μΩ-cm, 20°C

thickness

0.5 mm

bp

2567 °C (lit.)

mp

1083.4 °C (lit.)

density

8.94 g/mL at 25 °C (lit.)

application(s)

battery manufacturing

SMILES string

[Cu]

InChI

1S/Cu

InChI key

RYGMFSIKBFXOCR-UHFFFAOYSA-N

General description

Copper is a versatile metal crucial in catalysis and material science. Its excellent electrical and thermal conductivity, ductility, and corrosion resistance make it ideal for conductive materials. Additionally, copper serves as a catalyst in various chemical reactions, facilitating electron transfer and promoting redox processes, including reduction, cross-coupling, and "click" chemistry, such as copper-catalyzed azide-alkyne cycloaddition reactions.

Application


  • LaCl(3)-based sodium halide solid electrolytes with high ionic conductivity for all-solid-state batteries.: This article presents the development of LaCl3-based sodium halide solid electrolytes, with a focus on improving ionic conductivity using copper additives, aiming to advance the efficiency and safety of all-solid-state batteries (Fu et al., 2024).


  • Three-in-One Zinc Anodes Created by a Large-scale Two-Step Method Achieving Excellent Long-Term Cyclic Reversibility and Thin Electrode Integrity.: This research introduces a novel two-step method for creating zinc anodes, incorporating copper to achieve superior cyclic reversibility and electrode integrity, thus enhancing the longevity and performance of batteries (Lu et al., 2024).


  • Scanning Electrochemical Microscopy Meets Optical Microscopy: Probing the Local Paths of Charge Transfer Operando in Booster-Microparticles for Flow Batteries.: This study combines scanning electrochemical and optical microscopy to analyze the local charge transfer paths in booster-microparticles, using copper as a key component for improving the operando analysis in flow batteries (Moghaddam et al., 2024).


Quantity

50 × 50 mm (approximately 11 g)
150 × 150 mm (approximately 99 g)

Storage Class Code

13 - Non Combustible Solids

WGK

WGK 2

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Seiko Ishida et al.
Proceedings of the National Academy of Sciences of the United States of America, 110(48), 19507-19512 (2013-11-13)
Copper is an essential trace element, the imbalances of which are associated with various pathological conditions, including cancer, albeit via largely undefined molecular and cellular mechanisms. Here we provide evidence that levels of bioavailable copper modulate tumor growth. Chronic exposure
R Squitti et al.
Neurology, 67(1), 76-82 (2006-07-13)
To assess whether serum copper in Alzheimer disease (AD) correlates with cognitive scores, beta-amyloid, and other CSF markers of neurodegeneration. The authors studied copper, ceruloplasmin, total peroxide, and antioxidants levels (TRAP) in serum; beta-amyloid in plasma; and copper, beta-amyloid, h-tau
Magnus Andersson et al.
Nature structural & molecular biology, 21(1), 43-48 (2013-12-10)
Heavy metals in cells are typically regulated by PIB-type ATPases. The first structure of the class, a Cu(+)-ATPase from Legionella pneumophila (LpCopA), outlined a copper transport pathway across the membrane, which was inferred to be occluded. Here we show by
Hiroshi Sato et al.
Science (New York, N.Y.), 343(6167), 167-170 (2013-12-18)
Carbon monoxide (CO) produced in many large-scale industrial oxidation processes is difficult to separate from nitrogen (N2), and afterward, CO is further oxidized to carbon dioxide. Here, we report a soft nanoporous crystalline material that selectively adsorbs CO with adaptable
Stephen G Kaler et al.
The New England journal of medicine, 358(6), 605-614 (2008-02-08)
Menkes disease is a fatal neurodegenerative disorder of infancy caused by diverse mutations in a copper-transport gene, ATP7A. Early treatment with copper injections may prevent death and illness, but presymptomatic detection is hindered by the inadequate sensitivity and specificity of

Articles

Can there be an effective strategy for finding breakthrough materials, since they are, by definition, unpredictable? One answer is found in Combinatorial Materials Science techniques, which represent a powerful approach to identifying new and unexpected materials.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service