Skip to Content
Merck
All Photos(3)

Documents

256439

Sigma-Aldrich

4,4′-Methylenebis(phenyl isocyanate)

98%

Synonym(s):

4,4′-MDI, Bis(4-isocyanatophenyl)methane

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
CH2(C6H4NCO)2
CAS Number:
Molecular Weight:
250.25
Beilstein:
797662
EC Number:
MDL number:
UNSPSC Code:
12162002
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

98%

form

solid

reaction suitability

reagent type: cross-linking reagent

bp

200 °C/5 mmHg (lit.)

mp

42-45 °C (lit.)

density

1.18 g/mL at 25 °C (lit.)

storage temp.

−20°C

SMILES string

O=C=Nc1ccc(Cc2ccc(cc2)N=C=O)cc1

InChI

1S/C15H10N2O2/c18-10-16-14-5-1-12(2-6-14)9-13-3-7-15(8-4-13)17-11-19/h1-8H,9H2

InChI key

UPMLOUAZCHDJJD-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

4,4′-Methylenebis(phenyl isocyanate) (MDI) is an aromatic diisocyanates class of monomer that is widely used in the production of polyurethane plastics, foam insulation, coatings, adhesives, and sealants. It is highly reactive due to the presence of two isocyanate functional groups. MDI is known for its excellent strength, durability, and resistance to chemical and environmental damage, which makes it useful in resin composition, lithographic printing plates, coating films, optical films, image display devices, semiconductor devices, and polyurethane foam production.

Application

4,4′-Methylenebis(phenyl isocyanate) can be used as a starting material to synthesize:
  • Polyurethane cationomers, that are applicable in medical implants.
  • A prepolymer for preparing self-healable polyurethane elastomers.
It can also be used as a cross-linking agent to synthesize PEBA (polyether-block-amide) copolymer with improved mechanical properties, which are mainly used in soles, medical tubes, aerospace parts, and chemical separation. Additionally, MDI is also used as a crosslinker to covalently modify graphene oxide (GO) and enhance the corrosion resistance of polystyrene coatings. The resultant polystyrene/GO-MDI composite coatings showed superior corrosion resistance to unmodified polystyrene coatings. This approach can potentially be used to improve the durability of materials in various industrial and biomedical applications.

Pictograms

Health hazardExclamation mark

Signal Word

Danger

Hazard Classifications

Acute Tox. 4 Inhalation - Carc. 2 - Eye Irrit. 2 - Resp. Sens. 1 - Skin Irrit. 2 - Skin Sens. 1 - STOT RE 2 Inhalation - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

11 - Combustible Solids

WGK

WGK 1

Flash Point(F)

411.8 °F - closed cup

Flash Point(C)

211 °C - closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Journal of Applied Physiology, 70, 6983-6983 (1991)
Malin Engfeldt et al.
Contact dermatitis, 68(3), 175-180 (2012-10-11)
A 43-year-old woman was referred by her occupational health service with suspected occupational contact dermatitis. In connection with the investigation, a workplace visit was undertaken at her company, which used an adhesive based on pre-polymeric diphenylmethane diisocyanate in one of
Joshua W Schaeffer et al.
Journal of occupational and environmental hygiene, 10(4), 213-221 (2013-02-28)
The purpose of this study was to determine if there was a significant difference between two readily available sampling methodologies for airborne methylene bisphenyl diisocyanate (MDI), which is an essential precursor in the spray-on truck bed lining industry. Seventy-two personal
Adam V Wisnewski et al.
Molecular immunology, 54(2), 233-237 (2013-01-09)
Methylene diphenyl diisocyanate (MDI), a low molecular weight chemical important for producing polyurethane foam, coatings, and elastomers is a major cause of occupational asthma, however, mechanisms of disease pathogenesis remain poorly understood. This study characterizes the rearranged germline and hypervariable
Hanna K Lindberg et al.
Mutation research, 723(1), 1-10 (2011-04-02)
Toluene diisocyanate (TDI) and 4,4'-methylenediphenyl diisocyanate (MDI), used in the production of polyurethane foam, are well known for their irritating and sensitizing properties. Contradictory results have been obtained on their genotoxicity. We investigated the genotoxicity and protein binding of inhaled

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service