Skip to Content
Merck
  • Identification of kappa opioid receptors in the immune system by indirect immunofluorescence.

Identification of kappa opioid receptors in the immune system by indirect immunofluorescence.

Proceedings of the National Academy of Sciences of the United States of America (1995-02-14)
D M Lawrence, W el-Hamouly, S Archer, J F Leary, J M Bidlack
ABSTRACT

A method to visualize the kappa opioid receptor is described that uses a high-affinity fluorescein-conjugated opioid ligand and indirect immunofluorescence with the phycoerythrin fluorophore to amplify the signal. The mouse thymoma cell line R1E/TL8x.1.G1.OUAr.1 (R1EGO), which expresses the kappa 1 but not mu or delta opioid receptors, was used as a positive control for fluorescence labeling. A fluorescein isothiocyanate-conjugated arylacetamide (FITC-AA) compound displaying high affinity for the kappa opioid receptor was synthesized. R1EGO cells were incubated with FITC-AA, in the absence or presence of the kappa-selective opioid antagonist nor-binaltorphimine (nor-BNI) as a competitor. By using fluorescence microscopy and flow cytometry, incubation of R1EGO cells with FITC-AA alone was not sufficient for the detection of specific staining of the kappa opioid receptor. To amplify the FITC-AA fluorescence, the fluorescein served as a hapten for subsequent antibody detection. R1EGO cells were incubated with FITC-AA, followed by biotinylated rabbit anti-fluorescein IgG and extravidin-conjugated R-phycoerythrin. By using this approach, R1EGO cells were stained with phycoerythrin-amplified FITC-AA, and the staining was displaced with nor-BNI. Flow cytometry showed that titrations of both FITC-AA and nor-BNI produced saturable concentration-dependent changes in the median phycoerythrin fluorescence intensity, with optimal staining at 30 microM FITC-AA. Up to 80% of the fluorescence above background was inhibited by nor-BNI. Freshly isolated thymocytes from C57BL/6ByJ mice also showed nor-BNI-sensitive staining with the FITC-AA amplification. This sensitive method of indirect phycoerythrin immunofluorescence can be used to amplify any fluorescein-conjugated opioid ligand for the detection of opioid receptors.