Skip to Content
Merck
  • Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engineered cardiac constructs.

Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engineered cardiac constructs.

Tissue engineering. Part A (2014-01-15)
Kathy Ye Morgan, Lauren Deems Black
ABSTRACT

Electrical and mechanical stimulation have both been used extensively to improve the function of cardiac engineered tissue as each of these stimuli is present in the physical environment during normal development in vivo. However, to date, there has been no direct comparison between electrical and mechanical stimulation and current published data are difficult to compare due to the different systems used to create the engineered cardiac tissue and the different measures of functionality studied as outcomes. The goals of this study were twofold. First, we sought to directly compare the effects of mechanical and electrical stimulation on engineered cardiac tissue. Second, we aimed to determine the importance of the timing of the two stimuli in relation to each other in combined electromechanical stimulation. We hypothesized that delaying electrical stimulation after the beginning of mechanical stimulation to mimic the biophysical environment present during isovolumic contraction would improve construct function by improving proteins responsible for cell-cell communication and contractility. To test this hypothesis, we created a bioreactor system that would allow us to electromechanically stimulate engineered tissue created from neonatal rat cardiac cells entrapped in fibrin gel during 2 weeks in culture. Contraction force was higher for all stimulation groups as compared with the static controls, with the delayed combined stimulation constructs having the highest forces. Mechanical stimulation alone displayed increased final cell numbers but there were no other differences between electrical and mechanical stimulation alone. Delayed combined stimulation resulted in an increase in SERCA2a and troponin T expression levels, which did not happen with synchronous combined stimulation, indicating that the timing of combined stimulation is important to maximize the beneficial effect. Increases in Akt protein expression levels suggest that the improvements are at least in part induced by hypertrophic growth. In summary, combined electromechanical stimulation can create engineered cardiac tissue with improved functional properties over electrical or mechanical stimulation alone, and the timing of the combined stimulation greatly influences its effects on engineered cardiac tissue.