Skip to Content
Merck
  • Differential epigenetic reprogramming in response to specific endocrine therapies promotes cholesterol biosynthesis and cellular invasion.

Differential epigenetic reprogramming in response to specific endocrine therapies promotes cholesterol biosynthesis and cellular invasion.

Nature communications (2015-11-28)
Van T M Nguyen, Iros Barozzi, Monica Faronato, Ylenia Lombardo, Jennifer H Steel, Naina Patel, Philippa Darbre, Leandro Castellano, Balázs Győrffy, Laura Woodley, Alba Meira, Darren K Patten, Valentina Vircillo, Manikandan Periyasamy, Simak Ali, Gianmaria Frige, Saverio Minucci, R Charles Coombes, Luca Magnani
ABSTRACT

Endocrine therapies target the activation of the oestrogen receptor alpha (ERα) via distinct mechanisms, but it is not clear whether breast cancer cells can adapt to treatment using drug-specific mechanisms. Here we demonstrate that resistance emerges via drug-specific epigenetic reprogramming. Resistant cells display a spectrum of phenotypical changes with invasive phenotypes evolving in lines resistant to the aromatase inhibitor (AI). Orthogonal genomics analysis of reprogrammed regulatory regions identifies individual drug-induced epigenetic states involving large topologically associating domains (TADs) and the activation of super-enhancers. AI-resistant cells activate endogenous cholesterol biosynthesis (CB) through stable epigenetic activation in vitro and in vivo. Mechanistically, CB sparks the constitutive activation of oestrogen receptors alpha (ERα) in AI-resistant cells, partly via the biosynthesis of 27-hydroxycholesterol. By targeting CB using statins, ERα binding is reduced and cell invasion is prevented. Epigenomic-led stratification can predict resistance to AI in a subset of ERα-positive patients.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-SQLE antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution
Sigma-Aldrich
β-Estradiol, ≥98%