Skip to Content
Merck
  • Surfactant-Assisted Voltage-Driven Silver Nanoparticle Chain Formation across Microelectrode Gaps in Air.

Surfactant-Assisted Voltage-Driven Silver Nanoparticle Chain Formation across Microelectrode Gaps in Air.

ACS nano (2015-09-08)
Nidhi Shah, Francis P Zamborini
ABSTRACT

Here we describe the electrodeposition of Ag in the presence of cetyltrimethylammonium bromide (CTAB) onto 5 μm gap Au interdigitated array (IDA) electrodes that are bare, thiol-functionalized, or thiol-functionalized and seeded with 4 nm diameter Au nanoparticles (NPs). After deposition, applying a voltage between 5 and 10 V in air for 0 to 1000 s resulted in one-dimensional (1D) Ag NP chains spanning across the IDA gap. The Ag NP chains form on IDAs functionalized with thiols and Au NP-seeded at about 5 V and at 10 V for the other nonseeded surfaces. Ag NP chains do not form at all up to 10 V when IDAs are treated with ozone or water soaking to remove possible CTA(+) ions from the surface, when Ag deposition takes place in the absence of CTAB, or when the voltage is applied under dry N2 (low humidity). Chain formation occurs by Ag moving from the positive to negative electrode. Coating the devices with a negatively charged surfactant, sodium dodecyl sulfate, also results in Ag NP chains by Ag moving from the positive to the negative electrodes, which confirms that the chains form by electrochemical oxidation at the positive electrode and deposition at the negative electrode. The surfactant ions and thin layer of water present in the humid environment facilitate this electrochemical process.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Citrate Concentrated Solution, BioUltra, for molecular biology, 1 M in H2O
Sigma-Aldrich
Citrate Concentrated Solution, BioReagent, suitable for coagulation assays, 4 % (w/v)
Sigma-Aldrich
Sodium phosphate dibasic solution, BioUltra, 0.5 M in H2O
Sigma-Aldrich
Sodium phosphate dibasic, Vetec, reagent grade, 99%
Sigma-Aldrich
Sodium phosphate dibasic, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99.0%, free-flowing, Redi-Dri
Sigma-Aldrich
Sodium phosphate dibasic, puriss. p.a., ACS reagent, anhydrous, ≥99.0% (T)
Sigma-Aldrich
Sodium phosphate dibasic, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, E 339, anhydrous, 98-100.5% (calc. to the dried substance)
Sigma-Aldrich
Sodium phosphate dibasic, ACS reagent, ≥99.0%
Sigma-Aldrich
Sodium phosphate dibasic, AR, anhydrous, ≥99%
Sigma-Aldrich
Sodium phosphate dibasic, LR, ≥98%
SAFC
Hexadecyltrimethylammonium bromide, USP/NF
Sigma-Aldrich
Hexadecyltrimethylammonium bromide, BioUltra, for molecular biology, ≥99.0% (AT)
Sigma-Aldrich
Sodium phosphate dibasic, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
Sodium phosphate dibasic, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99.0%
Sigma-Aldrich
Hexadecyltrimethylammonium bromide, BioXtra, ≥99%
Sigma-Aldrich
Sodium phosphate dibasic, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Sodium phosphate dibasic, BioXtra, ≥99.0%
Sigma-Aldrich
Sodium phosphate dibasic, for molecular biology, ≥98.5% (titration)
Sigma-Aldrich
Hexadecyltrimethylammonium bromide, for molecular biology, ≥99%
Sigma-Aldrich
Hexadecyltrimethylammonium bromide, ≥98%
Sigma-Aldrich
1,8-Octanedithiol, ≥97%
Sigma-Aldrich
Sodium phosphate dibasic, 99.95% trace metals basis
Sigma-Aldrich
Hexadecyltrimethylammonium bromide, Vetec, reagent grade, 96%