Skip to Content
Merck
  • High-internal-phase-emulsion polymeric monolith coupled with liquid chromatography-electrospray tandem mass spectrometry for enrichment and sensitive detection of trace cytokinins in plant samples.

High-internal-phase-emulsion polymeric monolith coupled with liquid chromatography-electrospray tandem mass spectrometry for enrichment and sensitive detection of trace cytokinins in plant samples.

Analytical and bioanalytical chemistry (2015-05-31)
Fuyou Du, Lin Sun, Xian Zhen, Honggang Nie, Yanjie Zheng, Guihua Ruan, Jianping Li
ABSTRACT

High-internal-phase-emulsion polymers (polyHIPEs) show great promise as solid-phase-extraction (SPE) materials because of the tremendous porosity and highly interconnected framework afforded by the high-internal-phase-emulsion (HIPE) technique. In this work, polyHIPE monolithic columns as novel SPE materials were prepared and applied to trace enrichment of cytokinins (CKs) from complex plant samples. The polyHIPE monoliths were synthesized via the in-situ polymerization of the continuous phase of a HIPE containing styrene (STY) and divinylbenzene (DVB) in a stainless column, and revealed highly efficient and selective enrichment ability for aromatic compounds. Under the optimized experimental conditions, a method using a monolithic polyHIPE column combined with liquid chromatography-electrospray tandem mass spectrometry (LC-MS-MS) was developed for the simultaneous extraction and sensitive determination of trans-zeatin (tZ), meta-topolin (mT), kinetin (K), and kinetin riboside (KR). The proposed method had good linearity, with correlation coefficients (R (2)) from 0.9957 to 0.9984, and low detection limits (LODs, S/N = 3) in the range 2.4-47 pg mL(-1) for the four CKs. The method was successfully applied to the determination of CKs in real plant samples, and obtained good recoveries ranging from 68.8 % to 103.0 % and relative standard deviations (RSDs) lower than 16 %.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Isonicotinic acid, 99%
Sigma-Aldrich
Gibberellic acid, 90% gibberellin A3 basis (HPLC)
Sigma-Aldrich
Toluene, anhydrous, 99.8%
Sigma-Aldrich
Acetonitrile, ≥99.5%, ACS reagent
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Potassium persulfate, 99.99% trace metals basis
Sigma-Aldrich
Gibberellic acid, suitable for plant cell culture, BioReagent, ≥90% gibberellin A3 basis (of total gibberellins.)
Sigma-Aldrich
trans-Zeatin, BioReagent, suitable for plant cell culture, ≥97%
Sigma-Aldrich
Gibberellic acid potassium salt, suitable for plant cell culture, BioReagent, ~95%, ≥50% total GA3 basis
Sigma-Aldrich
Toluene, AR, rectified, 99.5%
Sigma-Aldrich
Toluene, LR, sulfur free, 99%
Sigma-Aldrich
Ultrapure Acetonitrile
Sigma-Aldrich
Potassium persulfate, AR, ≥99%
Sigma-Aldrich
Toluene, LR, ≥99%
Sigma-Aldrich
Potassium persulfate, LR, ≥98%
Sigma-Aldrich
Acetonitrile, AR, ≥99.5%
Sigma-Aldrich
Toluene, AR, ≥99.5%
Sigma-Aldrich
Toluene, suitable for HPLC, ≥99.8%
Sigma-Aldrich
Toluene, LR, rectified, 99%
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Toluene, suitable for HPLC, ≥99.9%
Supelco
Methanol solution, contains 0.10 % (v/v) formic acid, UHPLC, suitable for mass spectrometry (MS), ≥99.5%
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
trans-Zeatin hydrochloride, suitable for plant cell culture, ≥97%
Sigma-Aldrich
Tetracycline, 98.0-102.0% (HPLC)
Sigma-Aldrich
Methanol, low water for titration
Sigma-Aldrich
Gibberellin, 80% gibberellin A3 basis (TLC)
Sigma-Aldrich
Kinetin, ≥99.0% (HPLC)