Skip to Content
Merck

Artifacts in single-molecule localization microscopy.

Histochemistry and cell biology (2015-07-04)
Anne Burgert, Sebastian Letschert, Sören Doose, Markus Sauer
ABSTRACT

Single-molecule localization microscopy provides subdiffraction resolution images with virtually molecular resolution. Through the availability of commercial instruments and open-source reconstruction software, achieving super resolution is now public domain. However, despite its conceptual simplicity, localization microscopy remains prone to user errors. Using direct stochastic optical reconstruction microscopy, we investigate the impact of irradiation intensity, label density and photoswitching behavior on the distribution of membrane proteins in reconstructed super-resolution images. We demonstrate that high emitter densities in combination with inappropriate photoswitching rates give rise to the appearance of artificial membrane clusters. Especially, two-dimensional imaging of intrinsically three-dimensional membrane structures like microvilli, filopodia, overlapping membranes and vesicles with high local emitter densities is prone to generate artifacts. To judge the quality and reliability of super-resolution images, the single-molecule movies recorded to reconstruct the images have to be carefully investigated especially when investigating membrane organization and cluster analysis.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
DBCO-Cy5, for Copper-free Click Chemistry
Sigma-Aldrich
Formaldehyde solution, AR, contains 5-8% methanol as stabilizer, 37-41 % (w/v)
Sigma-Aldrich
Formaldehyde solution, LR, contains 5-8% methanol as stabilizer, 37-41 % (w/v)
Sigma-Aldrich
Ethanolamine, LR, ≥99%
Sigma-Aldrich
Ethanolamine, ≥98%
Sigma-Aldrich
Formaldehyde solution, for molecular biology, 36.5-38% in H2O
Sigma-Aldrich
Ethanolamine, liquid, BioReagent, suitable for cell culture, ≥98%
Sigma-Aldrich
Ethanolamine, ≥99%
Sigma-Aldrich
Formaldehyde solution, for molecular biology, BioReagent, ≥36.0% in H2O (T)
Sigma-Aldrich
Ethanolamine, ACS reagent, ≥99.0%
Sigma-Aldrich
Ethanolamine, purified by redistillation, ≥99.5%
Sigma-Aldrich
Formaldehyde-12C solution, 20% in H2O, 99.9 atom % 12C
Sigma-Aldrich
Formaldehyde solution, meets analytical specification of USP, ≥34.5 wt. %
Sigma-Aldrich
Formaldehyde solution, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)