Skip to Content
Merck
  • Compensating for magnetic field inhomogeneity in multigradient-echo-based MR thermometry.

Compensating for magnetic field inhomogeneity in multigradient-echo-based MR thermometry.

Magnetic resonance in medicine (2014-03-26)
Frank F J Simonis, Esben T Petersen, Lambertus W Bartels, Jan J W Lagendijk, Cornelis A T van den Berg
ABSTRACT

MR thermometry (MRT) is a noninvasive method for measuring temperature that can potentially be used for radio frequency (RF) safety monitoring. This application requires measuring absolute temperature. In this study, a multigradient-echo (mGE) MRT sequence was used for that purpose. A drawback of this sequence, however, is that its accuracy is affected by background gradients. In this article, we present a method to minimize this effect and to improve absolute temperature measurements using MRI. By determining background gradients using a B0 map or by combining data acquired with two opposing readout directions, the error can be removed in a homogenous phantom, thus improving temperature maps. All scans were performed on a 3T system using ethylene glycol-filled phantoms. Background gradients were varied, and one phantom was uniformly heated to validate both compensation approaches. Independent temperature recordings were made with optical probes. Errors correlated closely to the background gradients in all experiments. Temperature distributions showed a much smaller standard deviation when the corrections were applied (0.21°C vs. 0.45°C) and correlated well with thermo-optical probes. The corrections offer the possibility to measure RF heating in phantoms more precisely. This allows mGE MRT to become a valuable tool in RF safety assessment.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ethylene glycol, anhydrous, 99.8%
Supelco
Ethylene glycol, analytical standard
Sigma-Aldrich
Ethylene glycol, BioUltra, ≥99.5% (GC)
Supelco
Ethylene glycol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Ethylene glycol, ReagentPlus®, ≥99%
Sigma-Aldrich
Ethylene glycol, AR, ≥99%
Sigma-Aldrich
Ethylene glycol, LR, ≥99%
Sigma-Aldrich
Ethylene glycol, spectrophotometric grade, ≥99%
USP
Ethylene glycol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Ethylene glycol, Vetec, reagent grade, 98%
Supelco
Ethylene glycol solution, NMR reference standard, 80% in DMSO-d6 (99.9 atom % D), NMR tube size 5 mm × 8 in.
Sigma-Aldrich
Ethylene glycol 5 M solution