Skip to Content
Merck
  • Transcriptomic and proteomic analyses reveal key innate immune signatures in the host response to the gastrointestinal pathogen Campylobacter concisus.

Transcriptomic and proteomic analyses reveal key innate immune signatures in the host response to the gastrointestinal pathogen Campylobacter concisus.

Infection and immunity (2014-12-10)
Nadeem O Kaakoush, Nandan P Deshpande, Si Ming Man, Jose A Burgos-Portugal, Faisal A Khattak, Mark J Raftery, Marc R Wilkins, Hazel M Mitchell
ABSTRACT

Pathogenic species within the genus Campylobacter are responsible for a considerable burden on global health. Campylobacter concisus is an emergent pathogen that plays a role in acute and chronic gastrointestinal disease. Despite ongoing research on Campylobacter virulence mechanisms, little is known regarding the immunological profile of the host response to Campylobacter infection. In this study, we describe a comprehensive global profile of innate immune responses to C. concisus infection in differentiated THP-1 macrophages infected with an adherent and invasive strain of C. concisus. Using RNA sequencing (RNA-seq), quantitative PCR (qPCR), mass spectrometry, and confocal microscopy, we observed differential expression of pattern recognition receptors and robust upregulation of DNA- and RNA-sensing molecules. In particular, we observed IFI16 inflammasome assembly in C. concisus-infected macrophages. Global profiling of the transcriptome revealed the significant regulation of a total of 8,343 transcripts upon infection with C. concisus, which included the activation of key inflammatory pathways involving CREB1, NF-κB, STAT, and interferon regulatory factor signaling. Thirteen microRNAs and 333 noncoding RNAs were significantly regulated upon infection, including MIR221, which has been associated with colorectal carcinogenesis. This study represents a major advance in our understanding of host recognition and innate immune responses to infection by C. concisus.

MATERIALS
Product Number
Brand
Product Description

Supelco
L-Threonine, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
L-Threonine, BioXtra, ≥99.5% (NT)
Sigma-Aldrich
Sodium bicarbonate, tested according to Ph. Eur.
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Acetonitrile solution, contains 10.0% acetone, 0.05% formic acid, 40.0% 2-propanol
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (v/v) trifluoroacetic acid
Sigma-Aldrich
Iodoacetamide, BioUltra
Sigma-Aldrich
Iodoacetamide, Single use vial of 56 mg
Sigma-Aldrich
Sodium pyruvate, powder, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Sodium pyruvate, Hybri-Max, powder, suitable for hybridoma
Sigma-Aldrich
Sodium pyruvate, BioXtra, ≥99%
Sigma-Aldrich
Sodium pyruvate, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99%
Sigma-Aldrich
Sodium pyruvate, ReagentPlus®, ≥99%
Sigma-Aldrich
Iodoacetamide, ≥99% (NMR), crystalline
Sigma-Aldrich
Sodium bicarbonate, powder, BioReagent, for molecular biology, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Phorbol 12-myristate 13-acetate, ≥99% (TLC), film or powder
Sigma-Aldrich
Sodium bicarbonate, BioXtra, 99.5-100.5%
Sigma-Aldrich
Phorbol 12-myristate 13-acetate, synthetic, ≥98.0% (TLC)
SAFC
L-Threonine
Supelco
Aphidicolin, analytical standard
Supelco
L-Threonine, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Sodium bicarbonate, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Sodium pyruvate, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, ≥99%
Sigma-Aldrich
Sodium bicarbonate, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, E500, 99.0-100.5%, powder