Skip to Content
Merck
  • Synthesis of aligned porous poly(ε-caprolactone) (PCL)/hydroxyapatite (HA) composite microspheres.

Synthesis of aligned porous poly(ε-caprolactone) (PCL)/hydroxyapatite (HA) composite microspheres.

Materials science & engineering. C, Materials for biological applications (2013-03-19)
Mi-Jin Kim, Young-Hag Koh
ABSTRACT

We synthesized poly(ε-caprolactone) (PCL)/hydroxyapatite (HA) composite microspheres with an aligned porous structure and evaluated their potential applications in bone tissue engineering. A range of HA particles (0, 5, 10 and 20 wt.% in relation to the PCL polymer) were added to a PCL solution in order to improve the biocompatibility of the porous PCL/HA composite microspheres. All the synthesized microspheres showed that the HA particles were distributed well in the PCL matrix, while preserving their aligned porous structure. The average size of the PCL/HA composite microspheres increased from 62±7 to 179±95 μm with increasing HA content from 0 to 20 wt.%. The incorporation of the HA particles to the PCL polymer led to a considerable improvement in in vitro bioactivity, which was assessed by immersing the PCL/HA composite microspheres in simulated body fluid (SBF). A number of apatite crystals could be precipitated on the surface of the aligned porous PCL/HA composite microspheres after soaking in the SBF for 7 days.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Polycaprolactone, average Mn 45,000
Sigma-Aldrich
Polycaprolactone, average Mn 80,000
Sigma-Aldrich
Polycaprolactone, average Mw ~14,000, average Mn ~10,000 by GPC