Skip to Content
Merck
  • Hypoxia targeted bifunctional suicide gene expression enhances radiotherapy in vitro and in vivo.

Hypoxia targeted bifunctional suicide gene expression enhances radiotherapy in vitro and in vivo.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology (2012-09-04)
Xiaorong Sun, Ligang Xing, Xuelong Deng, Hung Tsung Hsiao, Akiko Manami, Jason A Koutcher, C Clifton Ling, Gloria C Li
ABSTRACT

To investigate whether hypoxia targeted bifunctional suicide gene expression-cytosine deaminase (CD) and uracil phosphoribosyltransferase (UPRT) with 5-FC treatments can enhance radiotherapy. Stable transfectants of R3327-AT cells were established which express a triple-fusion-gene: CD, UPRT and monomoric DsRed (mDsRed) controlled by a hypoxia inducible promoter. Hypoxia-induced expression/function of CDUPRTmDsRed was verified by western blot, flow cytometry, fluorescent microscopy, and cytotoxicity assay of 5-FU and 5-FC. Tumor-bearing mice were treated with 5-FC and local radiation. Tumor volume was monitored and compared with those treated with 5-FC or radiation alone. In addition, the CDUPRTmDsRed distribution in hypoxic regions of tumor sections was visualized with fluorescent microscopy. Hypoxic induction of CDUPRTmDsRed protein correlated with increased sensitivity to 5-FC and 5-FU. Significant radiosensitization effects were detected after 5-FC treatments under hypoxic conditions. In the tumor xenografts, the distribution of CDUPRTmDsRed expression visualized with fluorescence microscopy was co-localized with the hypoxia marker pimonidazole positive staining cells. Furthermore, administration of 5-FC to mice in combination with local irradiation resulted in significant tumor regression, as in comparison with 5-FC or radiation treatments alone. Our data suggest that the hypoxia-inducible CDUPRT/5-FC gene therapy strategy has the ability to specifically target hypoxic cancer cells and significantly improve the tumor control in combination with radiotherapy.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
5-Fluorocytosine, Vetec, reagent grade, 99%
Sigma-Aldrich
5-Fluorocytosine, nucleoside analog