Skip to Content
Merck
  • Poly(amidoamine) dendronized hollow fiber membranes: synthesis, characterization, and preliminary applications as drug delivery devices.

Poly(amidoamine) dendronized hollow fiber membranes: synthesis, characterization, and preliminary applications as drug delivery devices.

Acta biomaterialia (2011-12-14)
Qian Zhang, Na Wang, Tongwen Xu, Yiyun Cheng
ABSTRACT

Poly(amidoamine) (PAMAM) dendrons were prepared from hollow fiber membranes (HFM) consisting of bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO) in a stepwise manner. The prepared HFM were characterized by Fourier transform infrared spectroscopy, elemental analysis, and scanning electron microscopy. The drug loading efficiency and release behavior of the PAMAM dendronized HFM were evaluated using sodium salicylate, sodium methotrexate, and Congo red as model drugs. The results suggest that PAMAM dendronized HFM can be effectively loaded with a variety of drugs and prolong the release of these drugs. The drug loading and release characteristics of the HFM depend on the generation of PAMAM dendrons grafted on the membranes. The prepared PAMAM dendronized BPPO HFM are promising scaffolds in drug delivery and tissue engineering.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium salicylate, Vetec, reagent grade, 99%
Sigma-Aldrich
Sodium salicylate, ReagentPlus®, ≥99.5% (titration)
Sigma-Aldrich
Sodium salicylate, 98.0-102.0% anhydrous basis, meets USP testing specifications
Sigma-Aldrich
Sodium salicylate, ≥99.5% (HPLC), puriss. p.a.
Sigma-Aldrich
Sodium salicylate, puriss. p.a., reag. Ph. Eur., 99.5-101.0% (calc. to the dried substance)