- Detection of low-level environmental chemical allergy by a long-term sensitization method.
Detection of low-level environmental chemical allergy by a long-term sensitization method.
Multiple chemical sensitivity (MCS) is characterized by various signs, including neurological disorders and allergy. Exposure may occur through a major event, such as a chemical spill, or from long-term contact with chemicals at low levels. We are interested in the allergenicity of MCS and the detection of low-level chemical-related hypersensitivity. We used long-term sensitization followed by low-dose challenge to evaluate sensitization by well-known Th2 type sensitizers (trimellitic anhydride (TMA) and toluene diisocyanate (TDI)) and a Th1 type sensitizer (2,4-dinitrochlorobenzene (DNCB)). After topically sensitizing BALB/c mice (9 times in 3 weeks) and challenging them with TMA, TDI or DNCB, we assayed their auricular lymph nodes (LNs) for number of lymphocytes, surface antigen expression of B cells, and local cytokine production, and measured antigen-specific serum IgE levels. TMA and TDI induced marked increases in levels of antigen-specific serum IgE and of Th2 cytokines (IL-4, IL-5, IL-10, and IL-13) produced by ex vivo restimulated lymph node cells. DNCB induced a marked increase in Th1 cytokine (IL-2, IFN-gamma, and TNF-alpha) levels, but antigen-specific serum IgE levels were not elevated. All chemicals induced significant increases in number of lymphocytes and surface antigen expression of B cells. Our mouse model enabled the identification and characterization of chemical-related allergic reactions at low levels. This long-term sensitization method would be useful for detecting environmental chemical-related hypersensitivity.