Skip to Content
Merck

Rbfox1 Mediates Cell-type-Specific Splicing in Cortical Interneurons.

Neuron (2018-10-16)
Brie Wamsley, Xavier Hubert Jaglin, Emilia Favuzzi, Giulia Quattrocolo, Maximiliano José Nigro, Nusrath Yusuf, Alireza Khodadadi-Jamayran, Bernardo Rudy, Gord Fishell
ABSTRACT

Cortical interneurons display a remarkable diversity in their morphology, physiological properties, and connectivity. Elucidating the molecular determinants underlying this heterogeneity is essential for understanding interneuron development and function. We discovered that alternative splicing differentially regulates the integration of somatostatin- and parvalbumin-expressing interneurons into nascent cortical circuits through the cell-type-specific tailoring of mRNAs. Specifically, we identified a role for the activity-dependent splicing regulator Rbfox1 in the development of cortical interneuron-subtype-specific efferent connectivity. Our work demonstrates that Rbfox1 mediates largely non-overlapping alternative splicing programs within two distinct but related classes of interneurons.

MATERIALS
Product Number
Brand
Product Description

Roche
Dispase® II (neutral protease, grade II), lyophilized, from bacterial, Roche, pkg of 5 × 1 g