Skip to Content
Merck
  • Substituent effect of N-benzylated gramine derivatives that prevent the PP2A inhibition and dissipate the neuronal Ca2+ overload, as a multitarget strategy for the treatment of Alzheimer's disease.

Substituent effect of N-benzylated gramine derivatives that prevent the PP2A inhibition and dissipate the neuronal Ca2+ overload, as a multitarget strategy for the treatment of Alzheimer's disease.

Bioorganic & medicinal chemistry (2018-04-17)
Dorleta Gonzalez, Raquel L Arribas, Lucia Viejo, Rocio Lajarin-Cuesta, Cristobal de Los Rios
ABSTRACT

Following the premises of the multitarget-directed ligands approach for the drug R&D against neurodegenerative diseases, where Alzheimer's disease (AD) outstands, we have synthesized and evaluated analogues of the gramine derivative ITH12657 (1-benzyl-5-methyl-3-(piperidin-1-ylmethyl-1H-indole, 2), which had shown important neuroprotective properties, such as blocking effect of voltage-gated Ca2+ channels (VGCC), and prevention of phosphoprotein phosphatase 2A (PP2A) inhibition. The new analogues present different substitutions at the pending phenyl ring, what slightly modified their pharmacological characteristics. The VGCC blockade was enhanced in derivatives possessing nitro groups, while the pro-PP2A feature was ameliorated by the presence of fluorine. Chlorine atoms supplied good activities over the two biological targets aimed; nevertheless that substitution provoked loss of viability at 100-fold higher concentrations (10 μM), what discards them for a deeper pharmacological study. Overall, the para-fluorine derivative of ITH12657 was the most promising candidate for further preclinical assays.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
p-Nitrophenyl Phosphate Liquid Substrate System, liquid
Sigma-Aldrich
5-Methylindole, 99%