Saltar al contenido
Merck
  • Chronic chemotherapeutic stress promotes evolution of stemness and WNT/beta-catenin signaling in colorectal cancer cells: implications for clinical use of WNT-signaling inhibitors.

Chronic chemotherapeutic stress promotes evolution of stemness and WNT/beta-catenin signaling in colorectal cancer cells: implications for clinical use of WNT-signaling inhibitors.

Oncotarget (2015-06-05)
Meriam Ayadi, Anaïs Bouygues, Djamila Ouaret, Nathalie Ferrand, Salem Chouaib, Jean-Paul Thiery, Christian Muchardt, Michèle Sabbah, Annette K Larsen
RESUMEN

Most solid tumors contain a subfraction of cells with stem/progenitor cell features. Stem cells are naturally chemoresistant suggesting that chronic chemotherapeutic stress may select for cells with increased "stemness". We carried out a comprehensive molecular and functional analysis of six independently selected colorectal cancer (CRC) cell lines with acquired resistance to three different chemotherapeutic agents derived from two distinct parental cell lines. Chronic drug exposure resulted in complex alterations of stem cell markers that could be classified into three categories: 1) one cell line, HT-29/5-FU, showed increased "stemness" and WNT-signaling, 2) three cell lines showed decreased expression of stem cell markers, decreased aldehyde dehydrogenase activity, attenuated WNT-signaling and lost the capacity to form colonospheres and 3) two cell lines displayed prominent expression of ABC transporters with a heterogeneous response for stem cell markers. While WNT-signaling could be attenuated in the HT-29/5-FU cells by the WNT-signaling inhibitors ICG-001 and PKF-118, this was not accompanied by any selective growth inhibitory effect suggesting that the cytotoxic activity of these compounds is not directly linked to WNT-signaling inhibition. We conclude that classical WNT-signaling inhibitors have toxic off-target activities that need to be addressed for clinical development.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Dodecilsulfatosódico, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC)
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
Dodecilsulfatosódico, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
Cloruro de sodio, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Fluoruro de fenilmetansulfonilo, ≥98.5% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 10% in H2O
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Dodecilsulfatosódico, ACS reagent, ≥99.0%
Sigma-Aldrich
Cloruro de sodio, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Dodecilsulfatosódico, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 20% in H2O
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Cloruro de sodio, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Dodecilsulfatosódico, BioUltra, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture