Saltar al contenido
Merck
  • Engineered protease inhibitors based on sunflower trypsin inhibitor-1 (SFTI-1) provide insights into the role of sequence and conformation in Laskowski mechanism inhibition.

Engineered protease inhibitors based on sunflower trypsin inhibitor-1 (SFTI-1) provide insights into the role of sequence and conformation in Laskowski mechanism inhibition.

The Biochemical journal (2015-05-20)
Simon J de Veer, Joakim E Swedberg, Muharrem Akcan, K Johan Rosengren, Maria Brattsand, David J Craik, Jonathan M Harris
RESUMEN

Laskowski inhibitors regulate serine proteases by an intriguing mode of action that involves deceiving the protease into synthesizing a peptide bond. Studies exploring naturally occurring Laskowski inhibitors have uncovered several structural features that convey the inhibitor's resistance to hydrolysis and exceptional binding affinity. However, in the context of Laskowski inhibitor engineering, the way that various modifications intended to fine-tune an inhibitor's potency and selectivity impact on its association and dissociation rates remains unclear. This information is important as Laskowski inhibitors are becoming increasingly used as design templates to develop new protease inhibitors for pharmaceutical applications. In this study, we used the cyclic peptide, sunflower trypsin inhibitor-1 (SFTI-1), as a model system to explore how the inhibitor's sequence and structure relate to its binding kinetics and function. Using enzyme assays, MD simulations and NMR spectroscopy to study SFTI variants with diverse sequence and backbone modifications, we show that the geometry of the binding loop mainly influences the inhibitor's potency by modulating the association rate, such that variants lacking a favourable conformation show dramatic losses in activity. Additionally, we show that the inhibitor's sequence (including both the binding loop and its scaffolding) influences its potency and selectivity by modulating both the association and the dissociation rates. These findings provide new insights into protease inhibitor function and design that we apply by engineering novel inhibitors for classical serine proteases, trypsin and chymotrypsin and two kallikrein-related peptidases (KLK5 and KLK14) that are implicated in various cancers and skin diseases.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Dimetil sulfóxido-d6, 99.9 atom % D
Sigma-Aldrich
Agua, Nuclease-Free Water, for Molecular Biology
Sigma-Aldrich
Agua, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Dimetil sulfóxido-d6, 99.9 atom % D, contains 0.03 % (v/v) TMS
Sigma-Aldrich
Dimetil sulfóxido-d6, 99.5 atom % D
Sigma-Aldrich
Agua, for embryo transfer, sterile-filtered, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Agua, for molecular biology, sterile filtered
Sigma-Aldrich
Agua, BioPerformance Certified
Sigma-Aldrich
Dimetil sulfóxido-d6, "100%", 99.96 atom % D
Sigma-Aldrich
Dimetil sulfóxido-d6, anhydrous, 99.9 atom % D
Sigma-Aldrich
Dimetil sulfóxido-d6, 99.9 atom % D, contains 1 % (v/v) TMS
Sigma-Aldrich
Agua, for cell biology, sterile ultrafiltered
Sigma-Aldrich
Agua, PCR Reagent
Sigma-Aldrich
Dimetil sulfóxido-d6, "100%", 99.96 atom % D, contains 0.03 % (v/v) TMS
Sigma-Aldrich
Agua, endotoxin, free