Saltar al contenido
Merck
  • Physiological and biochemical responses and microscopic structure changes of Populus tomentosa Carr seedlings to 4-BDE exposure.

Physiological and biochemical responses and microscopic structure changes of Populus tomentosa Carr seedlings to 4-BDE exposure.

Environmental science and pollution research international (2015-05-15)
Man Cai, Yuling Li, Yanling Li, Kejiu Du
RESUMEN

Populus species are very effective in remediation of contaminants. Polybrominated diphenyl ethers (PBDEs) are commonly used as flame retardants and are known to be persistent environmental pollutants. Numerous studies have shown that PBDEs are rising in human tissues and biota. 4-Monobrominated diphenyl ether (4-BDE), one of the less brominated PBDEs, was served as a model compound for biodegradation of lower brominated congeners. The present study was designed to clarify the effects of 4-BDE stress on morphological, physiological, and biochemical impacts of Populus tomentosa Carr in a tissue culture condition. Different concentrations of 4-BDE (3 and 30 mg L(-1)) were supplied alone or together with 0.5 mg L(-1) IBA in tissue culture media. With the concentration increased, 4-BDE caused negative effects on the microscopic structure of roots, stem, and leaves. The leaf color became shallow in low concentration of 4-BDE treatments and appeared albinism with 4-BDE concentration increased. The chlorophyll content and the leaf mass per area of albino leaves reduced significantly. 4-BDE also caused positive effects on the adventitious root differentiation and the biomass below 30 mg L(-1). With the 4-BDE treatment time increased (23, 47, and 58 days), the peroxidase (POD) activity displayed the decreasing trend. The proline content decreased first and then increased. Exposure to 4-BDE induced the malondialdehyde (MDA) to increase in leaves. Application of 4-BDE affected the endogenous hormone levels of cuttings in their adventitious roots inducing media. Below 0.3 mg L(-1), 4-BDE caused the faint expression of auxin-sensitive DR5::GUS reporter gene in Arabidopsis thaliana. Additionally, P. tomentosa Carr exhibited the better tolerance against 4-BDE in the range of less than 30 mg L(-1).

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
4-Bromodiphenyl ether, 99%