Saltar al contenido
Merck

Commercial formaldehyde standard for mass calibration in mass spectrometry.

Journal of mass spectrometry : JMS (2015-03-25)
Jadwiga Lyczko, Daniel G Beach, Wojciech Gabryelski
RESUMEN

Common calibration standards for mass spectrometry can be a source of many problems including instrument contamination, ionization suppression and formation of unidentified ions during subsequent analysis. In this article, we present a new approach for the calibration of mass analyzers such as a quadrupole-time-of-flight mass spectrometry using a diluted solution of commercial formaldehyde. Formaldehyde is an inexpensive and commonly used solvent, and its intrinsic polymerization leads to the formation of polyoxymethylene (POM) oligomers, which are excellent multiple calibration standards for a low-mass spectral region (up to m/z 400) in the positive and negative mode of electrospray ionization. We explore the nature and origin of these polymeric species and attributed them to chemical reactions of formaldehyde and stabilizing agents in commercial formaldehyde solutions and during electrospray ionization. In contrast to other calibrants, POM oligomers do not contaminate the instrument and can easily be removed from the sample delivery system. Using tandem mass spectrometry, we elucidate the structures of the detected POM oligomers and report their reference masses, which are tightly spaced by 30 mass units. In our calibration method, mass errors of <5 ppm can be obtained from m/z 20-400 using external calibration with a simple one-point zero-order correction of spectral data and without the need for operation of a dual spray or internal calibrants. Our approach will be particularly useful for those interested in the analysis of fragile ions with low m/z values and can function at instrumental conditions required for analysis of the most labile metabolites and environmental contaminants.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Metanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Metanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Metanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Ammonium acetate, ACS reagent, ≥97%
Sigma-Aldrich
Formaldehído solution, for molecular biology, 36.5-38% in H2O
Sigma-Aldrich
Ammonium acetate, ≥99.99% trace metals basis
SAFC
Formaldehído solution, contains 10-15% methanol as stabilizer, 37 wt. % in H2O
Sigma-Aldrich
Metanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Metanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Metanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Ammonium acetate, for molecular biology, ≥98%
Sigma-Aldrich
Metanol, Absolute - Acetone free
Sigma-Aldrich
Metanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Metanol, BioReagent, ≥99.93%
Sigma-Aldrich
Ammonium acetate solution, for molecular biology, 7.5 M
Sigma-Aldrich
Formaldehído solution, for molecular biology, BioReagent, ≥36.0% in H2O (T)
Supelco
Bisphenol A, ≥99%
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
USP
Metanol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Metanol, anhydrous, 99.8%
Sigma-Aldrich
Ammonium acetate, 99.999% trace metals basis
Sigma-Aldrich
Formaldehído solution, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
Sigma-Aldrich
Bisphenol A, 97%
Supelco
Formaldehído solution, stabilized with methanol, ~37 wt. % in H2O, certified reference material
Supelco
Ammonium acetate, LiChropur, eluent additive for LC-MS
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Tropic acid, 98%
Supelco
N-Nitrosodi-n-butylamine, analytical standard
Sigma-Aldrich
Metanol, puriss., meets analytical specification of Ph Eur, ≥99.7% (GC)