Saltar al contenido
Merck
  • Assessment of thermal stress adaptation by monitoring Hsp70 and MnSOD in the freshwater gastropod, Bellamya bengalensis (Lamark 1882).

Assessment of thermal stress adaptation by monitoring Hsp70 and MnSOD in the freshwater gastropod, Bellamya bengalensis (Lamark 1882).

Environmental monitoring and assessment (2014-09-23)
Sangita Maiti Dutta, Soumyajit Banerjee Mustafi, Sanghamitra Raha, Susanta Kumar Chakraborty
RESUMEN

Expression of the stress biomarkers 70-kDa heat shock proteins (Hsp70) and manganese superoxide dismutase (MnSOD) was measured as the molecular basis of adaptive response against increased experimental temperatures (32-40 °C for a span of 24-72 h) on the fresh water molluscan species, Bellamya bengalensis (Lamark 1882). The experimental snail specimens were collected during summer and winter seasons from two contrasting wetlands: an ecorestored (free from human interference) site (SI) and other experiencing anthropogenic stresses (SII). The mortality rate of the B. bengalensis and the immunoblotting of MnSOD and Hsp70 of their digestive glands were performed at regular intervals during the period of heat stress. The SI provided a lower stress environment based on physicochemical parameters such as pH, dissolved oxygen (DO), biological oxygen demand (BOD), chemical oxygen demand (COD), and alkalinity for the survival of test species, although both sites experienced mortality due to thermal stresses. The parity in protein expressions displayed a uniform mode of adaptive impact to temperature elevations in both field and laboratory exposure. The Hsp70 expression was minimal at lower thermal stress, but increased with a rise in temperature. It is very likely that higher Hsp70 levels are not directly related to survival or adaptation. In contrast, MnSOD levels appeared to be an indicator of adaptive responses vis-a-vis survival of the animals. So, the expression levels of a universal free radical scavenger like MnSOD are recognized as a potential biomarker in a bioindicator species like Bellamya.