Saltar al contenido
Merck

Nonallele specific silencing of ataxin-7 improves disease phenotypes in a mouse model of SCA7.

Molecular therapy : the journal of the American Society of Gene Therapy (2014-06-17)
Pavitra S Ramachandran, Ryan L Boudreau, Kellie A Schaefer, Albert R La Spada, Beverly L Davidson
RESUMEN

Spinocerebellar ataxia type 7 (SCA7) is a late-onset neurodegenerative disease characterized by ataxia and vision loss with no effective treatments in the clinic. The most striking feature is the degeneration of Purkinje neurons of the cerebellum caused by the presence of polyglutamine-expanded ataxin-7. Ataxin-7 is part of a transcriptional complex, and, in the setting of mutant ataxin-7, there is misregulation of target genes. Here, we designed RNAi sequences to reduce the expression of both wildtype and mutant ataxin-7 to test if reducing ataxin-7 in Purkinje cells is both tolerated and beneficial in an animal model of SCA7. We observed sustained reduction of both wildtype and mutant ataxin-7 as well as a significant improvement of ataxia phenotypes. Furthermore, we observed a reduction in cerebellar molecular layer thinning and nuclear inclusions, a hallmark of SCA7. In addition, we observed recovery of cerebellar transcripts whose expression is disrupted in the presence of mutant ataxin-7. These data demonstrate that reduction of both wildtype and mutant ataxin-7 by RNAi is well tolerated, and contrary to what may be expected from reducing a component of the Spt-Taf9-Gcn5 acetyltransferase complex, is efficacious in the SCA7 mouse.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Anti-β-actina monoclonal antibody produced in mouse, clone AC-15, ascites fluid
Sigma-Aldrich
Anticuerpo anti-c-Myc, monoclonal de ratón antibody produced in mouse, clone 9E10, purified from hybridoma cell culture
Sigma-Aldrich
Anti-c-Myc antibody produced in rabbit, ~0.5 mg/mL, affinity isolated antibody, buffered aqueous solution