Saltar al contenido
Merck
  • Progress in palladium-based catalytic systems for the sustainable synthesis of annulated heterocycles: a focus on indole backbones.

Progress in palladium-based catalytic systems for the sustainable synthesis of annulated heterocycles: a focus on indole backbones.

Chemical Society reviews (2012-03-27)
Mélanie Platon, Régine Amardeil, Laurent Djakovitch, Jean-Cyrille Hierso
RESUMEN

A survey highlighting the most recent palladium catalytic systems produced and their performances for progress in direct synthesis of indole backbones by heterocarbocyclization of reactive substrates is provided. The discussion is developed in relation with the principles of sustainable chemistry concerning atom and mass economy. In this respect, the general convergent character of the syntheses is of particular interest (one-pot, domino, cascade or tandem reactions), and the substrates accessibility and reactivity, together with the final waste production, are also important. This critical review clearly indicates that the development of ligand chemistry, mainly phosphines and carbenes, in the last few decades gave a significant impetus to powerful functionalization of indoles at virtually all positions of this ubiquitous backbone (118 references).

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Palladium, powder, 99.995% trace metals basis
Sigma-Aldrich
Palladium, powder, <1 μm, ≥99.9% trace metals basis
Sigma-Aldrich
Palladium, powder or granules, 99.99% trace metals basis
Sigma-Aldrich
Palladium, nanopowder, <25 nm particle size (TEM), ≥99.5%
Sigma-Aldrich
Palladium, foil, thickness 0.025 mm, 99.9% trace metals basis
Sigma-Aldrich
Palladium, powder, <75 μm, 99.9% trace metals basis
Sigma-Aldrich
Palladium, sponge, 99.9% trace metals basis
Sigma-Aldrich
Palladium, wire, diam. 0.5 mm, 99.9% trace metals basis
Sigma-Aldrich
Palladium, foil, thickness 1.0 mm, 99.9% trace metals basis
Sigma-Aldrich
Palladium, wire, diam. 1.0 mm, 99.9% trace metals basis
Sigma-Aldrich
Palladium, foil, thickness 0.25 mm, 99.98% trace metals basis
Palladium, tube, 50mm, outside diameter 1.0mm, inside diameter 0.8mm, wall thickness 0.1mm, as drawn, 99.95%
Palladium, rod, 50mm, diameter 4.0mm, 99.95%
Palladium, rod, 100mm, diameter 2.0mm, 99.95%
Palladium, foil, 10x10mm, thickness 0.50mm, as rolled, 99.99+%
Sigma-Aldrich
Palladium, evaporation slug, diam. × L 0.6 cm × 0.6 cm, 99.95% trace metals basis
Palladium, rod, 10mm, diameter 6.0mm, 99.95%
Palladium, rod, 50mm, diameter 2.0mm, 99.95%
Palladium, foil, 25x25mm, thickness 0.50mm, as rolled, 99.99+%
Palladium, foil, light tested, 25x25mm, thickness 0.025mm, as rolled, 99.95%
Palladium, wire reel, 1m, diameter 0.05mm, as drawn, 99.9%
Palladium, rod, 25mm, diameter 6.0mm, 99.95%
Palladium, foil, light tested, 50x50mm, thickness 0.025mm, as rolled, 99.99+%
Palladium, tube, 50mm, outside diameter 2.0mm, inside diameter 1.6mm, wall thickness 0.2mm, as drawn, 99.95%
Palladium, foil, 25x25mm, thickness 0.25mm, as rolled, 99.99+%
Palladium, foil, not light tested, 50x50mm, thickness 0.025mm, as rolled, 99.95%
Palladium, wire reel, 1m, diameter 0.25mm, as drawn, 99.99+%
Palladium, foil, 4mm disks, thickness 0.25mm, as rolled, 99.95%
Palladium, foil, light tested, 25x25mm, thickness 0.006mm, 99.95%
Palladium, microfoil, disks, 25mm, thinness 0.25μm, specific density 303.4μg/cm2, permanent mylar 3.5μm support, 99.99%