Saltar al contenido
Merck

Mutations in the reduced folate carrier gene which confer dominant resistance to 5,10-dideazatetrahydrofolate.

The Journal of biological chemistry (1998-09-25)
A Tse, K Brigle, S M Taylor, R G Moran
RESUMEN

L1210/D3 mouse leukemia cells are resistant to 5, 10-dideazatetrahydrofolate due to expansion of cellular folate pools which block polyglutamation of the drug (Tse, A., and Moran, R. G. (1998) J. Biol. Chem. 273, 25944-25952). These cells were found to have two point mutations in the reduced folate carrier (RFC), resulting in a replacement of isoleucine 48 by phenylalanine and of tryptophan 105 by glycine. Each mutation contributes to the resistance phenotype. Genomic DNA from resistant cells contained both the wild-type and mutant alleles, but wild-type message was not detected. Folic acid was a much better substrate, and 5-formyltetrahydrofolate was a poorer substrate for transport in L1210/D3 cells relative to L1210 cells. Enhanced transport of folic acid was due to a marked, approximately 20-fold, decrease in the influx Km. Influx of methotrexate and 5,10-dideazatetrahydrofolate were minimally altered. Transfection of mutated rfc cDNA into RFC-null L1210/A cells produced the substrate specificity and 5, 10-dideazatetrahydrofolate resistance observed in the L1210/D3 line. Transfection of the mutant cDNA into wild-type cells also conferred resistance to 5,10-dideazatetrahydrofolate. We conclude that the I48F and W105G mutations in RFC caused resistance to 5, 10-dideazatetrahydrofolate, that the region of the RFC protein near these two positions defines the substrate-binding site, that the wild-type allele was silenced during the multistep development of resistance, and that this mutant phenotype represents a genetically dominant trait.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Lometrexol hydrate, ≥95% (HPLC)
Número de referencia del producto (SKU)
Tamaño de envase
Disponibilidad
Precio
Cantidad