- Amiodarone improves anemia in a murine model of sickle cell disease and is associated with increased erythrocyte bis(monoacylglycerol) phosphate.
Amiodarone improves anemia in a murine model of sickle cell disease and is associated with increased erythrocyte bis(monoacylglycerol) phosphate.
Sickle cell disease (SCD) is associated with altered plasma and erythrocyte lipid profiles. In a previous study, SCD mice with deficiency of proprotein convertase subtilisin/kexin type 9 (PCSK9) were observed to have more severe anemia and increased sickling compared to control SCD mice. Although PCSK9 affects circulating low density lipoprotein (LDL) by regulation of the LDL receptor, the effect of PCSK9 on anemia was independent of LDL receptor expression. In the current study, erythrocyte metabolomics were performed and revealed altered erythrocyte lipid species between SCD mice with and without PCSK9. Of particular interest, the late endosome-specific lipid bis(mono)acylglycerol phosphate (BMP) 44:12 was markedly decreased in erythrocytes from SCD mice deficient in PCSK9 mice relative to control SCD mice. Incubation of sickle erythrocytes with a neutralizing antibody to BMP increased erythrocyte sickling in vitro. In vitro treatment of SCD erythrocytes with amiodarone (1.5 μM) or medroxyprogesterone (6.75 μM), two pharmacologic compounds known to increase BMP, resulted in reduced erythrocyte sickling. Treatment of SCD mice with amiodarone (10 mg/kg) for 2 weeks resulted in increased BMP, improvement in anemia with reduced reticulocytosis, and decreased ex vivo sickling. In conclusion, severity of anemia in SCD is improved with amiodarone treatment, an effect which may be mediated through increased erythrocyte BMP.