Saltar al contenido
Merck

ATR/Chk1/Smurf1 pathway determines cell fate after DNA damage by controlling RhoB abundance.

Nature communications (2014-09-25)
Meilin Wang, Lei Guo, Qingang Wu, Taoling Zeng, Qi Lin, Yikai Qiao, Qun Wang, Mingdong Liu, Xin Zhang, Lan Ren, Sheng Zhang, Yihua Pei, Zhenyu Yin, Feng Ding, Hong-Rui Wang
RESUMEN

ATM- and RAD3-related (ATR)/Chk1 and ataxia-telangiectasia mutated (ATM)/Chk2 signalling pathways play critical roles in the DNA damage response. Here we report that the E3 ubiquitin ligase Smurf1 determines cell apoptosis rates downstream of DNA damage-induced ATR/Chk1 signalling by promoting degradation of RhoB, a small GTPase recognized as tumour suppressor by promoting death of transformed cells. We show that Smurf1 targets RhoB for degradation to control its abundance in the basal state. DNA damage caused by ultraviolet light or the alkylating agent methyl methanesulphonate strongly activates Chk1, leading to phosphorylation of Smurf1 that enhances its self-degradation, hence resulting in a RhoB accumulation to promote apoptosis. Suppressing RhoB levels by overexpressing Smurf1 or blocking Chk1-dependent Smurf1 self-degradation significantly inhibits apoptosis. Hence, our study unravels a novel ATR/Chk1/Smurf1/RhoB pathway that determines cell fate after DNA damage, and raises the possibility that aberrant upregulation of Smurf1 promotes tumorigenesis by excessively targeting RhoB for degradation.