Saltar al contenido
Merck

Three-dimensional printing of functionally graded liquid crystal elastomer.

Science advances (2020-09-27)
Zijun Wang, Zhijian Wang, Yue Zheng, Qiguang He, Yang Wang, Shengqiang Cai
RESUMEN

As a promising actuating material, liquid crystal elastomer (LCE) has been intensively explored in building diverse active structures and devices. Recently, direct ink writing technique has been developed to print LCE structures with various geometries and actuation behaviors. Despite the advancement in printing LCE, it remains challenging to print three-dimensional (3D) LCE structures with graded properties. Here, we report a facile method to tailor both the actuation behavior and mechanical properties of printed LCE filaments by varying printing parameters. On the basis of the comprehensive processing-structure-property relationship, we propose a simple strategy to print functionally graded LCEs, which greatly increases the design space for creating active morphing structures. We further demonstrate mitigation of stress concentration near the interface between an actuatable LCE tube and a rigid glass plate through gradient printing. The strategy developed here will facilitate potential applications of LCEs in different fields.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Isobutyrophenone, 97%