Saltar al contenido
Merck
  • Inhibitory Effect of Slit2-N on VEGF165-induced proliferation of vascular endothelia via Slit2-N-Robo4-Akt pathway in choroidal neovascularization.

Inhibitory Effect of Slit2-N on VEGF165-induced proliferation of vascular endothelia via Slit2-N-Robo4-Akt pathway in choroidal neovascularization.

Cell cycle (Georgetown, Tex.) (2019-05-14)
Shaoqiu Jiang, Yong Du, Danning Liu, Junchi He, Yike Huang, Ke Qin, Xiyuan Zhou
RESUMEN

Researches have been focusing on the role of Slit2 in angiogenesis, specifically in cell migration and vessel permeability. Nevertheless, the role of Slit2-N, the bioactive fragment of Slit2, in the proliferation of vascular endothelia in choroidal neovascularization and some related mechanisms have not been studied yet. Thus, our study aimed to explore the role of Slit2-N in proliferation of vascular endothelia and the related mechanisms in choroidal neovascularization. Fluorescein isothiocyanate perfusion and HE staining were performed to evaluate volumes of choroidal neovascularization lesions. The effect of Slit2-N on VEGF165-induced cell proliferation and some related mechanisms were detected by CCK8 assay, flow cytometry, siRNA transfection, and western blotting. We found that Slit2-N reduced volumes of laser-induced choroidal neovascularization networks in vivo. Results of the in vitro study showed Slit2-N reduced VEGF165-induced cell proliferation of both human umbilical vascular endothelial cells and human microvascular endothelial cells possibly via activation of AKT rather than that of ERK1/2. Additionally, Robo4, one of the receptors binding to Slit2-N, was involved in the inhibitory effect of Slit2-N. Generally, our findings revealed the inhibitory role of Slit2-N in proliferation of vascular endothelia and some related mechanisms, and presented some potential targets, molecules along Slit2-N-Robo4-AKT axis, to choroidal neovascularization therapy.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Isotiocianato de fluoresceína-dextrano, average mol wt 2,000,000