Saltar al contenido
Merck
  • High-Fat Diet Affects Ceramide Content, Disturbs Mitochondrial Redox Balance, and Induces Apoptosis in the Submandibular Glands of Mice.

High-Fat Diet Affects Ceramide Content, Disturbs Mitochondrial Redox Balance, and Induces Apoptosis in the Submandibular Glands of Mice.

Biomolecules (2019-12-19)
Anna Zalewska, Mateusz Maciejczyk, Julita Szulimowska, Monika Imierska, Agnieszka Błachnio-Zabielska
RESUMEN

This is the first study to investigate the relationship between ceramides, the mitochondrial respiratory system, oxidative stress, inflammation, and apoptosis in the submandibular gland mitochondria of mice with insulin resistance (IR). The experiment was conducted on 20 male C57BL/6 mice divided into two equal groups: animals fed a high-fat diet (HFD; 60 kcal% fat) and animals fed a standard diet (10 kcal% fat). We have shown that feeding mice HFD induces systemic IR. We noticed that HFD feeding was accompanied by a significant increase in ceramide production (C18 1Cer, C18 Cer, C22 Cer, C24 1Cer, C24 Cer), higher activity of pro-oxidant enzymes (NADPH oxidase and xanthine oxidase), and weakened functioning of mitochondrial complexes in the submandibular glands of IR mice. In this group, we also observed a decrease in catalase and peroxidase activities, glutathione concentration, redox status, increased concentration of protein (advanced glycation end products, advanced oxidation protein products) and lipid (malondialdehyde, lipid hydroperoxide) peroxidation products, and enhanced production of tumor necrosis factor alpha (TNFα) and interleukin 2 (IL-2) as well as pro-apoptotic Bax in the submandibular gland mitochondria. In summary, HFD impairs salivary redox homeostasis and is responsible for enhanced oxidative damage and apoptosis in the submandibular gland mitochondria. The accumulation of some ceramides could boost free radical formation by affecting pro-oxidant enzymes and the mitochondrial respiratory chain.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Avanti
Sphingosine (d17:1), Avanti Research - A Croda Brand 860640P, powder
Avanti
C15 Ceramide-d7 (d18:1-d7/15:0), Avanti Research - A Croda Brand 860681P, powder
Avanti
C18 Ceramide-d7 (d18:1-d7/18:0), Avanti Research - A Croda Brand 860677P, powder
Avanti
Sphingosine-1-Phosphate (d17:1), Avanti Research - A Croda Brand
Avanti
C16 Ceramide-d7 (d18:1-d7/16:0), Avanti Research - A Croda Brand 860676P, powder
Avanti
C18 Ceramide (d17:1/18:0), Avanti Research - A Croda Brand 860646P, powder