Saltar al contenido
Merck

NCK-dependent pericyte migration promotes pathological neovascularization in ischemic retinopathy.

Nature communications (2018-08-29)
Alexandre Dubrac, Steffen E Künzel, Sandrine H Künzel, Jinyu Li, Rachana Radhamani Chandran, Kathleen Martin, Daniel M Greif, Ralf H Adams, Anne Eichmann
RESUMEN

Pericytes are mural cells that surround capillaries and control angiogenesis and capillary barrier function. During sprouting angiogenesis, endothelial cell-derived platelet-derived growth factor-B (PDGF-B) regulates pericyte proliferation and migration via the platelet-derived growth factor receptor-β (PDGFRβ). PDGF-B overexpression has been associated with proliferative retinopathy, but the underlying mechanisms remain poorly understood. Here we show that abnormal, α-SMA-expressing pericytes cover angiogenic sprouts and pathological neovascular tufts (NVTs) in a mouse model of oxygen-induced retinopathy. Genetic lineage tracing demonstrates that pericytes acquire α-SMA expression during NVT formation. Pericyte depletion through inducible endothelial-specific knockout of Pdgf-b decreases NVT formation and impairs revascularization. Inactivation of the NCK1 and NCK2 adaptor proteins inhibits pericyte migration by preventing PDGF-B-induced phosphorylation of PDGFRβ at Y1009 and PAK activation. Loss of Nck1 and Nck2 in mural cells prevents NVT formation and vascular leakage and promotes revascularization, suggesting PDGFRβ-Y1009/NCK signaling as a potential target for the treatment of retinopathies.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Anticuerpo anti-actina, αmúsculo liso- Cy3 monoclonal de ratón, clone 1A4, purified from hybridoma cell culture
Sigma-Aldrich
Anti-Fibronectin antibody produced in rabbit, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
MISSION® esiRNA, targeting human NCK1
Sigma-Aldrich
MISSION® esiRNA, targeting human NCK2