Skip to Content
Merck
  • The mitochondrial function of the cerebral vasculature in insulin-resistant Zucker obese rats.

The mitochondrial function of the cerebral vasculature in insulin-resistant Zucker obese rats.

American journal of physiology. Heart and circulatory physiology (2016-02-14)
Ivan Merdzo, Ibolya Rutkai, Tunde Tokes, Venkata N L R Sure, Prasad V G Katakam, David W Busija
ABSTRACT

Little is known about mitochondrial functioning in the cerebral vasculature during insulin resistance (IR). We examined mitochondrial respiration in isolated cerebral arteries of male Zucker obese (ZO) rats and phenotypically normal Zucker lean (ZL) rats using the Seahorse XFe24 analyzer. We investigated mitochondrial morphology in cerebral blood vessels as well as mitochondrial and nonmitochondrial protein expression levels in cerebral arteries and microvessels. We also measured reactive oxygen species (ROS) levels in cerebral microvessels. Under basal conditions, the mitochondrial respiration components (nonmitochondrial respiration, basal respiration, ATP production, proton leak, and spare respiratory capacity) showed similar levels among the ZL and ZO groups with the exception of maximal respiration, which was higher in the ZO group. We examined the role of nitric oxide by measuring mitochondrial respiration following inhibition of nitric oxide synthase with N(ω)-nitro-l-arginine methyl ester (l-NAME) and mitochondrial activation after administration of diazoxide (DZ). Both ZL and ZO groups showed similar responses to these stimuli with minor variations.l-NAME significantly increased the proton leak, and DZ decreased nonmitochondrial respiration in the ZL group. Other components were not affected. Mitochondrial morphology and distribution within vascular smooth muscle and endothelium as well as mitochondrial protein levels were similar in the arteries and microvessels of both groups. Endothelial nitric oxide synthase (eNOS) and ROS levels were increased in cerebral microvessels of the ZO. Our study suggests that mitochondrial function is not significantly altered in the cerebral vasculature of young ZO rats, but increased ROS production might be due to increased eNOS in the cerebral microcirculation during IR.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Monoclonal Anti-β-Actin antibody produced in mouse, clone AC-15, ascites fluid
Sigma-Aldrich
Anti-Glial Fibrillary Acidic Protein antibody produced in rabbit, ~1 mg/mL, affinity isolated antibody, buffered aqueous solution