Skip to Content
Merck
  • Bioorthogonal mimetics of palmitoyl-CoA and myristoyl-CoA and their subsequent isolation by click chemistry and characterization by mass spectrometry reveal novel acylated host-proteins modified by HIV-1 infection.

Bioorthogonal mimetics of palmitoyl-CoA and myristoyl-CoA and their subsequent isolation by click chemistry and characterization by mass spectrometry reveal novel acylated host-proteins modified by HIV-1 infection.

Proteomics (2015-04-29)
David R Colquhoun, Alexey E Lyashkov, Ceereena Ubaida Mohien, Veronica N Aquino, Brandon T Bullock, Rhoel R Dinglasan, Brian J Agnew, David R M Graham
ABSTRACT

Protein acylation plays a critical role in protein localization and function. Acylation is essential for human immunodeficiency virus 1 (HIV-1) assembly and budding of HIV-1 from the plasma membrane in lipid raft microdomains and is mediated by myristoylation of the Gag polyprotein and the copackaging of the envelope protein is facilitated by colocalization mediated by palmitoylation. Since the viral accessory protein NEF has been shown to alter the substrate specificity of myristoyl transferases, and alter cargo trafficking lipid rafts, we hypothesized that HIV-1 infection may alter protein acylation globally. To test this hypothesis, we labeled HIV-1 infected cells with biomimetics of acyl azides, which are incorporated in a manner analogous to natural acyl-Co-A. A terminal azide group allowed us to use a copper catalyzed click chemistry to conjugate the incorporated modifications to a number of substrates to carry out SDS-PAGE, fluorescence microscopy, and enrichment for LC-MS/MS. Using LC-MS/MS, we identified 103 and 174 proteins from the myristic and palmitic azide enrichments, with 27 and 45 proteins respectively that differentiated HIV-1 infected from uninfected cells. This approach has provided us with important insights into HIV-1 biology and is widely applicable to many virological systems.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
L-Glutamine
Sigma-Aldrich
Methyl acetoacetate, Arxada quality, ≥99% (GC)
Supelco
Urea, 8 M (after reconstitution with 16 mL high purity water)
Sigma-Aldrich
Methyl acetoacetate, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
Sucrose, puriss., meets analytical specification of Ph. Eur., BP, NF
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 20% in H2O
Sigma-Aldrich
Sucrose, BioUltra, for molecular biology, ≥99.5% (HPLC)
Sigma-Aldrich
Bromophenol Blue, ACS reagent
Sigma-Aldrich
HEPES buffer solution, 1 M in H2O
Sigma-Aldrich
MES solution, BioUltra, for molecular biology, 0.5 M in H2O
Sigma-Aldrich
MES, low moisture content, ≥99% (titration)
Sigma-Aldrich
Urea, BioXtra, pH 7.5-9.5 (20 °C, 5 M in H2O)
Sigma-Aldrich
Urea, ACS reagent, 99.0-100.5%
Sigma-Aldrich
Urea, powder, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Urea, ReagentPlus®, ≥99.5%, pellets
Sigma-Aldrich
Urea, meets USP testing specifications
Sigma-Aldrich
Urea, suitable for electrophoresis
Sigma-Aldrich
Sucrose, meets USP testing specifications
Sigma-Aldrich
Bromophenol Blue, titration: suitable
Sigma-Aldrich
L-Glutamine, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
L-Glutamine, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Sucrose, ≥99.5% (GC), Grade II, suitable for plant cell culture
Sigma-Aldrich
L-Glutamine, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
Sucrose, ACS reagent
Sigma-Aldrich
Sucrose, Grade I, ≥99% (GC), suitable for plant cell culture
Sigma-Aldrich
Sucrose, for molecular biology, ≥99.5% (GC)