Skip to Content
Merck
  • Autophagy supports survival and phototransduction protein levels in rod photoreceptors.

Autophagy supports survival and phototransduction protein levels in rod photoreceptors.

Cell death and differentiation (2015-01-13)
Z Zhou, T A Doggett, A Sene, R S Apte, T A Ferguson
ABSTRACT

Damage and loss of the postmitotic photoreceptors is a leading cause of blindness in many diseases of the eye. Although the mechanisms of photoreceptor death have been extensively studied, few studies have addressed mechanisms that help sustain these non-replicating neurons for the life of an organism. Autophagy is an intracellular pathway where cytoplasmic constituents are delivered to the lysosomal pathway for degradation. It is not only a major pathway activated in response to cellular stress, but is also important for cytoplasmic turnover and to supply the structural and energy needs of cells. We examined the importance of autophagy in photoreceptors by deleting the essential autophagy gene Atg5 specifically in rods. Loss of autophagy led to progressive degeneration of rod photoreceptors beginning at 8 weeks of age such that by 44 weeks few rods remained. Cone photoreceptor numbers were only slightly diminished following rod degeneration but their function was significantly decreased. Rod cell death was apoptotic but was not dependent on daily light exposure or accelerated by intense light. Although the light-regulated translocation of the phototransduction proteins arrestin and transducin were unaffected in rods lacking autophagy, Atg5-deficient rods accumulated transducin-α as they degenerated suggesting autophagy might regulate the level of this protein. This was confirmed when the light-induced decrease in transducin was abolished in Atg5-deficient rods and the inhibition of autophagy in retinal explants cultures prevented its degradation. These results demonstrate that basal autophagy is essential to the long-term health of rod photoreceptors and a critical process for maintaining optimal levels of the phototransduction protein transducin-α. As the lack of autophagy is associated with retinal degeneration and altered phototransduction protein degradation in the absence of harmful gene products, this process may be a viable therapeutic target where rod cell loss is the primary pathologic event.

MATERIALS
Product Number
Brand
Product Description

SAFC
BIS-TRIS
Sigma-Aldrich
Sodium fluoride, anhydrous, powder, 99.99% trace metals basis
Sigma-Aldrich
Osmium tetroxide solution, suitable for electron microscopy, 4% in H2O
Sigma-Aldrich
Osmium tetroxide solution, suitable for electron microscopy, 2% in H2O
Sigma-Aldrich
Sodium fluoride, 99.99% trace metals basis
Supelco
Ethanol standards 10% (v/v), 10 % (v/v) in H2O, analytical standard
Supelco
Fluoride ion solution for ISE, 0.1 M F-, analytical standard (for ion-selective electrodes)
Sigma-Aldrich
Sodium fluoride, BioXtra, ≥99%
Sigma-Aldrich
Sodium fluoride, BioReagent, suitable for insect cell culture, ≥99%
Sigma-Aldrich
Sodium fluoride 0.5 M solution
Sigma-Aldrich
Ethanol, BioUltra, for molecular biology, ≥99.8%, (absolute alcohol, without additive, A15 o1)
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
(±)-Propylene oxide, puriss. p.a., ≥99.5% (GC)
Supelco
Sodium chloride, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
(±)-Propylene oxide, ReagentPlus®, ≥99%
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
BIS-TRIS, BioUltra, ≥99.0% (NT)
Sigma-Aldrich
Sodium chloride, tested according to Ph. Eur.
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Anti-Angiopoietin-2 antibody produced in goat, affinity isolated antibody, lyophilized powder
Sigma-Aldrich
Sodium chloride solution, 0.85%
Supelco
Dehydrated Alcohol, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol
USP
Dehydrated Alcohol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Sodium pyrophosphate tetrabasic, ≥95%
Sigma-Aldrich
BIS-TRIS, BioPerformance Certified, suitable for cell culture, suitable for insect cell culture, ≥98.0%
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%