Skip to Content
Merck
  • Scallop protein with endogenous high taurine and glycine content prevents high-fat, high-sucrose-induced obesity and improves plasma lipid profile in male C57BL/6J mice.

Scallop protein with endogenous high taurine and glycine content prevents high-fat, high-sucrose-induced obesity and improves plasma lipid profile in male C57BL/6J mice.

Amino acids (2014-03-25)
Hanne Sørup Tastesen, Alison H Keenan, Lise Madsen, Karsten Kristiansen, Bjørn Liaset
ABSTRACT

High-protein diets induce alterations in metabolism that may prevent diet-induced obesity. However, little is known as to whether different protein sources consumed at normal levels may affect diet-induced obesity and associated co-morbidities. We fed obesity-prone male C57BL/6J mice high-fat, high-sucrose diets with protein sources of increasing endogenous taurine content, i.e., chicken, cod, crab and scallop, for 6 weeks. The energy intake was lower in crab and scallop-fed mice than in chicken and cod-fed mice, but only scallop-fed mice gained less body and fat mass. Liver mass was reduced in scallop-fed mice, but otherwise no changes in lean body mass were observed between the groups. Feed efficiency and apparent nitrogen digestibility were reduced in scallop-fed mice suggesting alterations in energy utilization and metabolism. Overnight fasted plasma triacylglyceride, non-esterified fatty acids, glycerol and hydroxy-butyrate levels were significantly reduced, indicating reduced lipid mobilization in scallop-fed mice. The plasma HDL-to-total-cholesterol ratio was higher, suggesting increased reverse cholesterol transport or cholesterol clearance in scallop-fed mice in both fasted and non-fasted states. Dietary intake of taurine and glycine correlated negatively with body mass gain and total fat mass, while intake of all other amino acids correlated positively. Furthermore taurine and glycine intake correlated positively with improved plasma lipid profile, i.e., lower levels of plasma lipids and higher HDL-to-total-cholesterol ratio. In conclusion, dietary scallop protein completely prevents high-fat, high-sucrose-induced obesity whilst maintaining lean body mass and improving the plasma lipid profile in male C57BL/6J mice.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Potassium chloride, tested according to Ph. Eur.
Sigma-Aldrich
Potassium chloride, ≥99.99% trace metals basis
Sigma-Aldrich
DL-Tryptophan, ≥99% (HPLC)
Sigma-Aldrich
Potassium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Potassium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Supelco
Potassium chloride solution, for Ag/AgCl electrodes, ~3 M KCl, saturated with silver chloride
Supelco
Potassium chloride solution, conductance standard B acc. to ISO 7888, 0.01 M KCl
Supelco
ISA (ionic strength adjustment solution: 1 M KCl), 1 M KCl
Sigma-Aldrich
Potassium chloride, 99.999% trace metals basis
Sigma-Aldrich
DL-Tryptophan, ≥99% (HPLC)
Sigma-Aldrich
Potassium chloride solution, 0.075 M, sterile-filtered, BioXtra, suitable for cell culture
Sigma-Aldrich
Potassium chloride, BioXtra, ≥99.0%
Sigma-Aldrich
Potassium chloride, for molecular biology, ≥99.0%
Sigma-Aldrich
Potassium chloride, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99.0%
Supelco
Potassium chloride solution, conductance standard C acc. to ISO 7888, 0.001 M KCl
Supelco
Potassium chloride solution, BioUltra, ~3 M in H2O
Sigma-Aldrich
Potassium chloride solution, BioUltra, for molecular biology, ~1 M in H2O
Supelco
Potassium chloride solution, conductance standard A acc. to ISO 7888, 0.1 M KCl
Sigma-Aldrich
Potassium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Tryptophan, European Pharmacopoeia (EP) Reference Standard
Supelco
Potassium Chloride, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Potassium chloride, ReagentPlus®, ≥99.0%