Skip to Content
Merck
  • Substrate specificity of R3 receptor-like protein-tyrosine phosphatase subfamily toward receptor protein-tyrosine kinases.

Substrate specificity of R3 receptor-like protein-tyrosine phosphatase subfamily toward receptor protein-tyrosine kinases.

The Journal of biological chemistry (2013-07-03)
Juichi Sakuraba, Takafumi Shintani, Sachiko Tani, Masaharu Noda
ABSTRACT

Receptor-like protein-tyrosine phosphatases (RPTPs) are involved in various aspects of cellular functions, such as proliferation, differentiation, survival, migration, and metabolism. A small number of RPTPs have been reported to regulate activities of some cellular proteins including receptor protein-tyrosine kinases (RPTKs). However, our understanding about the roles of individual RPTPs in the regulation of RPTKs is still limited. The R3 RPTP subfamily reportedly plays pivotal roles in the development of several tissues including the vascular and nervous systems. Here, we examined enzyme-substrate relationships between the four R3 RPTP subfamily members and 21 RPTK members selected from 14 RPTK subfamilies by using a mammalian two-hybrid system with substrate-trapping RPTP mutants. Among the 84 RPTP-RPTK combinations conceivable, we detected 30 positive interactions: 25 of the enzyme-substrate relationships were novel. We randomly chose several RPTKs assumed to be substrates for R3 RPTPs, and validated the results of this screen by in vitro dephosphorylation assays, and by cell-based assays involving overexpression and knock-down experiments. Because their functional relationships were verified without exception, it is probable that the RPTKs identified as potential substrates are actually physiological substrates for the R3 RPTPs. Interestingly, some RPTKs were recognized as substrates by all R3 members, but others were recognized by only one or a few members. The enzyme-substrate relationships identified in the present study will shed light on physiological roles of the R3 RPTP subfamily.