Skip to Content
Merck
  • [Operational mechanism modification of bone mechanostat in an animal model of nutritional stress: effect of propranolol].

[Operational mechanism modification of bone mechanostat in an animal model of nutritional stress: effect of propranolol].

Revista de investigacion clinica; organo del Hospital de Enfermedades de la Nutricion (2013-06-12)
Patricia Mabel Pintos, Christian Esteban Lezón, Clarisa Bozzini, Silvia María Friedman, Patricia Mónica Boyer
ABSTRACT

Propranolol (P) treatment exerts a preventive effect against the detrimental consequences to bone status in mildly chronically food-restricted growing rats (NGR) by an increment in cortical bone and by improving its spatial distribution. To study the effect of beta-blocker on operational mechanism of bone mechanostat in an animal model of nutritional stress. Weanling male Wistar rats were randomly assigned to four groups: control (C), C + P (CP), NGR and NGR + P (NGRP). C and CP rats were fed freely with the standard diet. NGR and NGRP rats received, for 4 weeks, 80% of the amount of food consumed by C and CP respectively, the previous day, corrected by body weight. Propranolol (7 mg/kg/day) was injected ip 5 days per week, for four weeks in CP and NGRP rats. C and NGR received saline injections at an identical dosage regimen. Body weight and length were determined during the experimental period. Dietary intake was registered daily. Animals were sacrificed after 4 weeks of food restriction. Immediately, cuadriceps, femur and tibiae from each animal were dissected and weighed, and histomorphometric and mechanical studies were performed. Serum a-CTX, osteocalcin, intact PTH, calcium and phosphorous were determined. Body protein (% prot) was measured in all groups. Food restriction induced detrimental effects on body and femoral growth, load-bearing capacity (Wf), % prot and cuadriceps weight in NGR us. C (p < 0.01). beta-blocker did not modify anthropometric and bone morphometric parameters in NGRP and CP us. NGR and C, respectively (p > 0.05). However, Wf NGRP vs. NGR was significantly higher (p < 0.01). alpha-CTX was significantly higher in NGR vs. C (p < 0.01). No significant differences were observed in alpha-CTX levels between CP, NGRP and C (p > 0.05). Serum osteocalcin, intact PTH, calcium and phospho- rous showed no significant difference between groups (p > 0.05). These results suggest that modeling increase in bone mass and strength in NGRP rats could be due to an anticatabolic interaction of the beta-blocker propranolol on operational mechanism of bone mechanostat in an animal model of nutritional stress.

MATERIALS
Product Number
Brand
Product Description

Propranolol hydrochloride, European Pharmacopoeia (EP) Reference Standard
Supelco
Propranolol hydrochloride, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
(±)-Propranolol hydrochloride, ≥99% (TLC), powder