Skip to Content
Merck
  • Intravenous ferric chloride hexahydrate supplementation induced endothelial dysfunction and increased cardiovascular risk among hemodialysis patients.

Intravenous ferric chloride hexahydrate supplementation induced endothelial dysfunction and increased cardiovascular risk among hemodialysis patients.

PloS one (2012-12-12)
Ko-Lin Kuo, Szu-Chun Hung, Yao-Ping Lin, Ching-Fang Tang, Tzong-Shyuan Lee, Chih-Pei Lin, Der-Cherng Tarng
ABSTRACT

The association between intravenous (IV) iron administration and outcomes in hemodialysis (HD) patients is still debated. Therefore, this study was aimed to assess the relationship between the IV administration of ferric chloride hexahydrate (Atofen®) and cardiovascular (CV) outcome and the interaction between iron-induced oxidative stress and endothelial dysfunction in chronic HD patients. A cohort of 1239 chronic HD patients was recruited. In a follow-up of 12 months, Kaplan-Meier survival curves showed that higher doses of IV Atofen associated with higher risks for CV events and deaths in HD patients. In multivariate Cox models, compared to no iron supplementation, IV Atofen administration was an independent predictor for CV events and overall mortality. However, the nature of the observational cohort study possibly bears selection bias. We further found that IV Atofen enhanced the superoxide production of mononuclear cells (MNCs), the levels of circulating soluble adhesion molecules, and the adhesion of MNCs to human aortic endothelial cells (HAECs). In vitro experiments showed that Atofen increased the expression of intracellular cell adhesion molecule-1 and vascular cell adhesion molecule-1 in HAECs and aggravated the endothelial adhesiveness in a dose-dependent manner. These iron-induced changes were significantly attenuated by the co-treatment of HAECs with N-acetylcysteine and inhibitors of NADPH oxidase, nuclear factor κB, and activator protein-1. A cumulative dose of IV Atofen >800 mg within 6 months was associated with an adverse CV outcome and a higher mortality among chronic HD patients. The detrimental effects of IV iron supplementation were partly due to the increased oxidative stress and induction of MNC adhesion to endothelial cells, a pivotal index of early atherogenesis.

MATERIALS
Product Number
Brand
Product Description

Millipore
TDA Reagent, suitable for microbiology
Sigma-Aldrich
Iron(III) chloride solution, 0.2 M in 2-methyltetrahydrofuran
Sigma-Aldrich
Iron(III) chloride solution, purum, 45% FeCl3 basis
Sigma-Aldrich
Iron(III) chloride, anhydrous, powder, ≥99.99% trace metals basis
Sigma-Aldrich
Iron(III) chloride, sublimed grade, ≥99.9% trace metals basis
Sigma-Aldrich
Iron(III) chloride hexahydrate, puriss. p.a., reag. Ph. Eur., ≥99%
Sigma-Aldrich
Iron(III) chloride hexahydrate, puriss. p.a., ACS reagent, crystallized, 98.0-102% (RT)
Sigma-Aldrich
Iron(III) chloride hexahydrate, ACS reagent, 97%
Sigma-Aldrich
Iron(III) chloride hexahydrate, reagent grade, ≥98%, chunks