Skip to Content
Merck
  • Autophagy mediates the clearance of oligodendroglial SNCA/alpha-synuclein and TPPP/p25A in multiple system atrophy models.

Autophagy mediates the clearance of oligodendroglial SNCA/alpha-synuclein and TPPP/p25A in multiple system atrophy models.

Autophagy (2022-01-11)
Panagiota Mavroeidi, Fedra Arvanitaki, Maria Vetsi, Stefan Becker, Dimitrios Vlachakis, Poul Henning Jensen, Leonidas Stefanis, Maria Xilouri
ABSTRACT

Accumulation of the neuronal protein SNCA/alpha-synuclein and of the oligodendroglial phosphoprotein TPPP/p25A within the glial cytoplasmic inclusions (GCIs) represents the key histophathological hallmark of multiple system atrophy (MSA). Even though the levels/distribution of both oligodendroglial SNCA and TPPP/p25A proteins are critical for disease pathogenesis, the proteolytic mechanisms involved in their turnover in health and disease remain poorly understood. Herein, by pharmacological and molecular modulation of the autophagy-lysosome pathway (ALP) and the proteasome we demonstrate that the endogenous oligodendroglial SNCA and TPPP/p25A are degraded mainly by the ALP in murine primary oligodendrocytes and oligodendroglial cell lines under basal conditions. We also identify a KFERQ-like motif in the TPPP/p25A sequence that enables its effective degradation via chaperone-mediated autophagy (CMA) in an in vitro system of rat brain lysosomes. Furthermore, in a MSA-like setting established by addition of human recombinant SNCA pre-formed fibrils (PFFs) as seeds of pathological SNCA, we thoroughly characterize the contribution of CMA and macroautophagy in particular, in the removal of the exogenously added and the seeded oligodendroglial SNCA pathological assemblies. We also show that PFF treatment impairs autophagic flux and that TPPP/p25A exerts an inhibitory effect on macroautophagy, while at the same time CMA is upregulated to remove the pathological SNCA species formed within oligodendrocytes. Finally, augmentation of CMA or macroautophagy accelerates the removal of the engendered pathological SNCA conformations further suggesting that autophagy targeting may represent a successful approach for the clearance of pathological SNCA and/or TPPP/p25A in the context of MSA.Abbreviations: 3MA: 3-methyladenine; ACTB: actin, beta; ALP: autophagy-lysosome pathway; ATG5: autophagy related 5; AR7: atypical retinoid 7; CMA: chaperone-mediated autophagy; CMV: cytomegalovirus; CTSD: cathepsin D; DAPI: 4',6-diamidino-2-phenylindole; DMEM: Dulbecco's modified Eagle's medium; Epox: epoxomicin; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GCIs: glial cytoplasmic inclusions; GFP: green fluorescent protein; HMW: high molecular weight; h: hours; HSPA8/HSC70: heat shock protein 8; LAMP1: lysosomal-associated membrane protein 1; LAMP2A: lysosomal-associated membrane protein 2A; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; mcherry: monomeric cherry; MFI: mean fluorescence intensity; mRFP: monomeric red fluorescent protein; MSA: multiple system atrophy; OLN: oligodendrocytes; OPCs: oligodendroglial progenitor cells; PBS: phosphate-buffered saline; PC12: pheochromocytoma cell line; PD: Parkinson disease; PFFs: pre-formed fibrils; PIs: protease inhibitors; PSMB5: proteasome (prosome, macropain) subunit, beta type 5; Rap: rapamycin; RFP: red fluorescent protein; Scr: scrambled; SDS: sodium dodecyl sulfate; SE: standard error; siRNAs: small interfering RNAs; SNCA: synuclein, alpha; SQSTM1: sequestosome 1; TPPP: tubulin polymerization promoting protein; TUBA: tubulin, alpha; UPS: ubiquitin-proteasome system; WT: wild type.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Rapamycin from Streptomyces hygroscopicus, ≥95% (HPLC), powder
Sigma-Aldrich
Goat Serum Donor Herd, USA origin, sterile-filtered, suitable for cell culture
Sigma-Aldrich
AR7, ≥98% (HPLC)
Sigma-Aldrich
3-Methyladenine, autophagy inhibitor