- Anti-arrhythmic effect of kappa-opioid receptor stimulation in the perfused rat heart: involvement of a cAMP-dependent pathway.
Anti-arrhythmic effect of kappa-opioid receptor stimulation in the perfused rat heart: involvement of a cAMP-dependent pathway.
During myocardial ischaemia the beta-adrenoceptor is activated, which contributes, at least partly, to cardiac arrhythmias via inducing [Ca2+]i oscillations. Since beta-adrenoceptor is negatively modulated by the kappa-opioid receptor in the heart, the present study attempted to determine if kappa-opioid receptor stimulation modulates the arrhythmogenic action of beta-adrenoceptor stimulation and to delineate the underlying mechanism. The effect of U50,488H, a selective kappa-opioid agonist, on arrhythmias in the isolated perfused rat heart subjected to low flow and 10(-6)mol/l norepinephrine (NE) were determined. Low flow induced arrhythmias, which were potentiated by NE, but not by 10(-6)mol/l U50,488H. The arrhythmia-potentiating effect of NE was antagonized by 10(-6)mol/l propranolol, a beta-adrenoceptor antagonist. U50,488H at 10(-6)mol/l also abolished the potentiation in arrhythmias by NE without affecting the arrhythmias induced by low flow. The anti-arrhythmic action of the kappa-opioid receptor agonist was abolished by 10(-6)mol/l nor-binaltorphimine, a selective kappa-opioid receptor antagonist, but not by 10(-7)mol/l calphostin C, an inhibitor of protein kinase C. Similarly, kappa-opioid receptor stimulation with U50,488H also abolished the NE-induced [Ca2+]i oscillations which are believed to cause cardiac arrhythmias, in ventricular myocytes. To determine whether the inhibitory actions of U50,488H against the effects of beta-adrenoceptor stimulation was via a cAMP-dependent or a cAMP-independent pathway, we determined the effects of U50,488H on NE-enhanced cAMP production and [Ca2+]i oscillations induced by either forskolin, an activator of adenylate cyclase, or Bay K-8644, a selective L-type Ca2+ channel agonist, in the ventricular myocytes. We found that U50,488H abolished the effect of forskolin, but did not alter the effect of Bay K-8644, on [Ca2+]i oscillations in the ventricular myocyte. In addition, U50, 488H also attenuated significantly the NE-induced elevation in cAMP in the heart. The observations suggest that kappa-opioid receptor stimulation abolishes the effect of beta-adrenoceptor stimulation on arrhythmias and [Ca2+]i oscillation via a cAMP-dependent pathway. The finding may be useful for the prevention and treatment of ischaemic heart diseases.