Skip to Content
Merck
  • Characterization of ceramic hydroxyapatite surface by inverse liquid chromatography in aquatic systems.

Characterization of ceramic hydroxyapatite surface by inverse liquid chromatography in aquatic systems.

Talanta (2015-11-26)
Karol Kadlec, Katarzyna Adamska, Adam Voelkel
ABSTRACT

The novel approach for hydroxyapatite (HA) surface characterization was proposed. The main aim of this investigation was to estimate surface properties of HA as a biomaterial in real system i.e. in simulated body fluid (SBF). One of the method, which might be used to reflect the influence of liquid environment on sorption properties of material being surrounded by this liquid, is called inverse liquid chromatography (ILC). The lowercase letters of LFER equation (e, s, a, b, v) served for this characterization. The sorption abilities of examined material were also estimated for two different aqueous mobile phases: deionized water and water solution of 0.1M Na2HPO4. It enabled to observe the change in physiochemical properties of surface, considered in Abraham model, dependence on ions concentration in the mobile phase. Moreover pH of every aquatic solution, normally about 7, was adjusted to 5.5 and 9 to observe the influence of hydrogen and hydroxyl ions concentration on HA sorption properties.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium hydrogencarbonate, −40-+140 mesh, ≥95%
Sigma-Aldrich
Acetic acid solution, suitable for HPLC
Sigma-Aldrich
Acetic acid, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Potassium chloride, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Sodium bicarbonate, ACS reagent, ≥99.7%
Sigma-Aldrich
Sodium bicarbonate, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Potassium chloride, puriss. p.a., ≥99.5% (AT)
Sigma-Aldrich
Sodium bicarbonate, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, E500, 99.0-100.5%, powder
Sigma-Aldrich
Potassium chloride, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, E508, 99-100.5% (AT), ≤0.0001% Al
Sigma-Aldrich
Acetic acid, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
Potassium chloride, ACS reagent, 99.0-100.5%
Sigma-Aldrich
Sodium bicarbonate, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99.7%
Sigma-Aldrich
Acetic acid, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Potassium chloride, BioXtra, ≥99.0%
Sigma-Aldrich
Potassium chloride, for molecular biology, ≥99.0%
Sigma-Aldrich
Sodium bicarbonate, BioXtra, 99.5-100.5%
Sigma-Aldrich
Potassium phosphate dibasic trihydrate, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Potassium chloride, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99.0%
Sigma-Aldrich
Potassium phosphate dibasic trihydrate, for molecular biology, ≥99%
Sigma-Aldrich
Potassium chloride solution, 0.075 M, sterile-filtered, BioXtra, suitable for cell culture
Sigma-Aldrich
Potassium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Potassium chloride solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Sodium bicarbonate, powder, BioReagent, for molecular biology, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Potassium chloride, ≥99.99% trace metals basis
Sigma-Aldrich
Potassium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Acetic acid, for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
1-Propanol, natural, ≥98%, FG
Sigma-Aldrich
Potassium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
1-Propanol, ≥99%, FG
Sigma-Aldrich
Potassium chloride, 99.999% trace metals basis