Skip to Content
Merck
  • Core-shell polymer nanoparticles for prevention of GSH drug detoxification and cisplatin delivery to breast cancer cells.

Core-shell polymer nanoparticles for prevention of GSH drug detoxification and cisplatin delivery to breast cancer cells.

Nanoscale (2015-10-16)
Bapurao Surnar, Kavita Sharma, Manickam Jayakannan
ABSTRACT

Platinum drug delivery against the detoxification of cytoplasmic thiols is urgently required for achieving efficacy in breast cancer treatment that is over expressed by glutathione (GSH, thiol-oligopeptide). GSH-resistant polymer-cisplatin core-shell nanoparticles were custom designed based on biodegradable carboxylic functional polycaprolactone (PCL)-block-poly(ethylene glycol) diblock copolymers. The core of the nanoparticle was fixed as 100 carboxylic units and the shell part was varied using various molecular weight poly(ethylene glycol) monomethyl ethers (MW of PEGs = 100-5000 g mol(-1)) as initiator in the ring-opening polymerization. The complexation of cisplatin aquo species with the diblocks produced core-shell nanoparticles of 75 nm core with precise size control the particles up to 190 nm. The core-shell nanoparticles were found to be stable in saline solution and PBS and they exhibited enhanced stability with increase in the PEG shell thickness at the periphery. The hydrophobic PCL layer on the periphery of the cisplatin core behaved as a protecting layer against the cytoplasmic thiol residues (GSH and cysteine) and exhibited <5% of drug detoxification. In vitro drug-release studies revealed that the core-shell nanoparticles were ruptured upon exposure to lysosomal enzymes like esterase at the intracellular compartments. Cytotoxicity studies were performed both in normal wild-type mouse embryonic fibroblast cells (Wt-MEFs), and breast cancer (MCF-7) and cervical cancer (HeLa) cell lines. Free cisplatin and polymer drug core-shell nanoparticles showed similar cytotoxicity effects in the HeLa cells. In MCF-7 cells, the free cisplatin drug exhibited 50% cell death whereas complete cell death (100%) was accomplished by the polymer-cisplatin core-shell nanoparticles. Confocal microscopic images confirmed that the core-shell nanoparticles were taken up by the MCF-7 and HeLa cells and they were accumulated both at the cytoplasm as well at peri-nuclear environments. The present investigation lays a new foundation for the polymer-based core-shell nanoparticles approach for overcoming detoxification in platinum drugs for the treatment of GSH over-expressed breast cancer cells.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
o-Phenylenediamine, tablet, 20 mg substrate per tablet
Sigma-Aldrich
o-Phenylenediamine, Peroxidase substrate, ≥98.0%, powder
Sigma-Aldrich
o-Phenylenediamine, sublimed, ≥99%
Sigma-Aldrich
3-Chloroperbenzoic acid, ≤77%
Sigma-Aldrich
Pyridinium chlorochromate, 98%
Sigma-Aldrich
cis-Diamineplatinum(II) dichloride, ≥99.9% trace metals basis
Sigma-Aldrich
o-Phenylenediamine, flaked, 99.5%
Sigma-Aldrich
Thiazolyl Blue Tetrazolium Bromide, 98%
Sigma-Aldrich
Thiazolyl Blue Tetrazolium Bromide, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥97.5% (HPLC)
Sigma-Aldrich
Phenol, unstabilized, purified by redistillation, ≥99%
Supelco
Phenol solution, 5000 μg/mL in methanol, certified reference material
Sigma-Aldrich
Triethylene glycol monomethyl ether, 95%
Sigma-Aldrich
1,4-Cyclohexanediol, 99%
Sigma-Aldrich
Potassium tert-butoxide solution, 1.0 M in THF
Sigma-Aldrich
Potassium tert-butoxide, reagent grade, ≥98%
Supelco
Phenol solution, certified reference material, 500 μg/mL in methanol
Sigma-Aldrich
Dimethyl sulfoxide, ACS reagent, ≥99.9%
Sigma-Aldrich
Dimethyl sulfoxide, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Phenol, natural, 97%, FG
Sigma-Aldrich
Dimethyl ether, ≥99.9%
Sigma-Aldrich
Phenol, puriss., meets analytical specification of Ph. Eur., BP, USP, 99.5-100.5% (GC)
Sigma-Aldrich
Phenol, ≥96.0% (calc. on dry substance, T)
Sigma-Aldrich
Phenol, ≥99%
Sigma-Aldrich
L-Glutathione reduced, BioXtra, ≥98.0%
Sigma-Aldrich
Phenol, BioUltra, for molecular biology, TE-saturated, ~73% (T)
Sigma-Aldrich
Phenol, puriss. p.a., ACS reagent, reag. Ph. Eur., 99.0-100.5%
Sigma-Aldrich
Potassium tert-butoxide, sublimed grade, 99.99% trace metals basis
Sigma-Aldrich
Phenol, unstabilized, ReagentPlus®, ≥99%
Sigma-Aldrich
Phenol, contains hypophosphorous as stabilizer, loose crystals, ACS reagent, ≥99.0%
Sigma-Aldrich
Liquified Phenol, ≥89.0%