Skip to Content
Merck
  • Streptococcus pneumoniae secretes hydrogen peroxide leading to DNA damage and apoptosis in lung cells.

Streptococcus pneumoniae secretes hydrogen peroxide leading to DNA damage and apoptosis in lung cells.

Proceedings of the National Academy of Sciences of the United States of America (2015-06-17)
Prashant Rai, Marcus Parrish, Ian Jun Jie Tay, Na Li, Shelley Ackerman, Fang He, Jimmy Kwang, Vincent T Chow, Bevin P Engelward
ABSTRACT

Streptococcus pneumoniae is a leading cause of pneumonia and one of the most common causes of death globally. The impact of S. pneumoniae on host molecular processes that lead to detrimental pulmonary consequences is not fully understood. Here, we show that S. pneumoniae induces toxic DNA double-strand breaks (DSBs) in human alveolar epithelial cells, as indicated by ataxia telangiectasia mutated kinase (ATM)-dependent phosphorylation of histone H2AX and colocalization with p53-binding protein (53BP1). Furthermore, results show that DNA damage occurs in a bacterial contact-independent fashion and that Streptococcus pyruvate oxidase (SpxB), which enables synthesis of H2O2, plays a critical role in inducing DSBs. The extent of DNA damage correlates with the extent of apoptosis, and DNA damage precedes apoptosis, which is consistent with the time required for execution of apoptosis. Furthermore, addition of catalase, which neutralizes H2O2, greatly suppresses S. pneumoniae-induced DNA damage and apoptosis. Importantly, S. pneumoniae induces DSBs in the lungs of animals with acute pneumonia, and H2O2 production by S. pneumoniae in vivo contributes to its genotoxicity and virulence. One of the major DSBs repair pathways is nonhomologous end joining for which Ku70/80 is essential for repair. We find that deficiency of Ku80 causes an increase in the levels of DSBs and apoptosis, underscoring the importance of DNA repair in preventing S. pneumoniae-induced genotoxicity. Taken together, this study shows that S. pneumoniae-induced damage to the host cell genome exacerbates its toxicity and pathogenesis, making DNA repair a potentially important susceptibility factor in people who suffer from pneumonia.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
MISSION® esiRNA, targeting human XRCC5
Sigma-Aldrich
Glycerol, FCC, FG
Sigma-Aldrich
Glycerin, meets USP testing specifications
Sigma-Aldrich
Catalase from bovine liver, lyophilized powder, 2,000-5,000 units/mg protein
Sigma-Aldrich
Glycerol, BioXtra, ≥99% (GC)
Sigma-Aldrich
Glycerol, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
Glycerol, ≥99.5%
Sigma-Aldrich
Glycerol, BioUltra, for molecular biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
Glycerol, Vetec, reagent grade, 99%
Sigma-Aldrich
Glycerol, for molecular biology, ≥99.0%
Sigma-Aldrich
Hydrogen peroxide solution, 30 % (w/w) in H2O, contains stabilizer
Sigma-Aldrich
Hydrogen peroxide solution, 34.5-36.5%
Sigma-Aldrich
Glycerol solution, 83.5-89.5% (T)
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Xrcc5
Sigma-Aldrich
Anti-phospho-Histone H2A.X (Ser139) Antibody, clone JBW301, clone JBW301, Upstate®, from mouse