Skip to Content
Merck
  • Evaluation of stationary phases packed with superficially porous particles for the analysis of pharmaceutical compounds using supercritical fluid chromatography.

Evaluation of stationary phases packed with superficially porous particles for the analysis of pharmaceutical compounds using supercritical fluid chromatography.

Journal of chromatography. A (2014-08-19)
Alexandre Grand-Guillaume Perrenoud, William P Farrell, Christine M Aurigemma, Nicole C Aurigemma, Szabolcs Fekete, Davy Guillarme
ABSTRACT

Superficially porous particles (SPP), or core shell particles, which consist of a non-porous silica core surrounded by a thin shell of porous silica, have gained popularity as a solid support for chromatography over the last decade. In the present study, five unbonded silica, one diol, and two ethylpyridine (2-ethyl and 4-ethyl) SPP columns were evaluated under SFC conditions using two mixtures, one with 17 drug-like compounds and the other one with 7 drug-like basic compounds. Three of the SPP phases, SunShell™ 2-ethylpyridine (2-EP), Poroshell™ HILIC, and Ascentis(®) Express HILIC, exhibited superior performances relative to the others (reduced theoretical plate height (hmin) values of 1.9-2.5 for neutral compounds). When accounting for both achievable plate count and permeability of the support using kinetic plot evaluation, the Cortecs™ HILIC 1.6μm and Ascentis(®) Express HILIC 2.7μm phases were found to be the best choices among tested SPPs to reach efficiencies up to 30,000 plates in the minimum amount of time. For desired efficiencies ranging from 30,000 to 60,000 plates, the SunShell™ 2-EP 2.6μm column clearly outperformed all other SPPs. With the addition of a mobile phase additive such as 10mM ammonium formate, which was required to elute the basic components with sharp peaks, the Poroshell™ HILIC, SunShell™ Diol and SunShell™ 2-EP phases represent the most orthogonal SPP columns with the highest peak capacities. This study demonstrates the obvious benefits of using columns packed with SPP on current SFC instrumentation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
2-Propanol, suitable for HPLC, 99.9%
Sigma-Aldrich
Isopropyl alcohol, meets USP testing specifications
Supelco
Ketoprofen, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Ketoprofen, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
2-Propanol, suitable for HPLC, 99.5%
Sigma-Aldrich
2-Propanol, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sulfamethoxazole, European Pharmacopoeia (EP) Reference Standard
Phloroglucinol (anhydrous), European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
(S)-(+)-6-Methoxy-α-methyl-2-naphthaleneacetic acid, 98%
Sigma-Aldrich
2-Propanol, for molecular biology, BioReagent, ≥99.5%
Sigma-Aldrich
Acetaminophen, BioXtra, ≥99.0%
Sigma-Aldrich
Phloroglucinol, Used to detect the presence of wood fiber.
Sigma-Aldrich
Ketoprofen, ≥98% (TLC)
Sigma-Aldrich
Caffeine, meets USP testing specifications, anhydrous
Sigma-Aldrich
Phloroglucinol, suitable for plant cell culture, BioReagent
Sigma-Aldrich
Caffeine, BioXtra
Sigma-Aldrich
Caffeine, Sigma Reference Standard, vial of 250 mg
Sigma-Aldrich
Caffeine, powder, ReagentPlus®
Sigma-Aldrich
Uracil, BioReagent, suitable for cell culture
Sigma-Aldrich
Acetaminophen, analytical standard
Sigma-Aldrich
Acetaminophen, meets USP testing specifications, 98.0-102.0%, powder
Sigma-Aldrich
Ketoprofen, meets USP testing specifications
Sigma-Aldrich
Flurbiprofen, cyclooxygenase inhibitor
Sigma-Aldrich
Butyl 4-hydroxybenzoate, ≥99.0% (GC)
Sigma-Aldrich
2-Propanol, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Caffeine, anhydrous, tested according to Ph. Eur.
Supelco
Naproxen, VETRANAL®, analytical standard
Sigma-Aldrich
Alprazolam
Supelco
Mettler-Toledo Calibration substance ME 18872, Caffeine, traceable to primary standards (LGC)
Sigma-Aldrich
Phloroglucinol, ≥99.0% (HPLC)